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Abstract 26 

Accurate delineation of management zones is essential for optimizing resource use and improving 27 

yield in precision agriculture. Electromagnetic induction (EMI) provides a rapid, non-invasive 28 

method to map soil variability, while the Normalized Difference Vegetation Index (NDVI) 29 

obtained with remote sensing captures above-ground crop dynamics. Integrating these datasets 30 

may enhance management zone delineation but presents challenges in data harmonization and 31 

analysis. This study presents a workflow combining unsupervised classification (clustering) and 32 

statistical validation to delineate management zones using EMI and NDVI data in a single 70 ha 33 

field of the patchCROP experiment in Tempelberg, Germany. Three datasets were investigated: (1) 34 

EMI maps, (2) NDVI maps, and (3) a combined EMI-NDVI dataset. Historical yield data and soil 35 

samples were used to refine the clusters through statistical analysis. The results demonstrate that 36 

four EMI-based zones effectively captured subsurface soil heterogeneity, while three NDVI-based 37 

zones better represented yield variability. A combination of EMI and NDVI data resulted in three 38 

zones that provided a balanced representation of both subsurface and above-ground variability. 39 

The final EMI-NDVI derived map demonstrates the potential of integrating multi-source datasets 40 

for field management. It provides actionable insights for precision agriculture, including optimized 41 

fertilization, irrigation, and targeted interventions, while also serving as a valuable resource for 42 

environmental modelling and soil surveying. 43 

  44 
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1 Introduction 45 

Reliable and accurate agricultural management zones that capture within-field variability affecting 46 

crop development can play a pivotal role in sustainable agriculture. Management zones can be 47 

used in the context of precision agriculture to optimize farming practices, increase yields, and 48 

reduce the use of available resources (Gebbers and Adamchuk, 2010; Janrao et al., 2019). This is 49 

not only valuable for profit maximization (Adhikari et al., 2022), but is also vital to meet future 50 

climate change and food security challenges (Antle et al., 2017; Chartzoulakis and Bertaki, 2015; 51 

Bongiovanni and Lowenberg-Deboer, 2004), such as Goal 2 (Zero Hunger) and Goal 15 (Life on 52 

Land) of the United Nations Sustainable Development Goals (SDGs) (Hou et al., 2020; UN, 2021). 53 

Generally, management zones aim to consider the impact of various factors that can influence crop 54 

productivity and result in yield gaps, a key one being soil heterogeneity and health (Licker et al., 55 

2010). Soil systems can be relatively static in time (Arshad et al., 2015) and are fundamental due 56 

to their multifunctional role and impact on ecosystem services (Hamidov et al., 2018). Within these 57 

systems, soil properties such as texture, organic matter content, cation exchange capacity, and bulk 58 

density greatly influence soil moisture dynamics, salinity, nutrient availability, and other variables 59 

affecting crop yield (Kibblewhite et al., 2008; Dobarco et al., 2021) and are thus a good target for 60 

management zone delineation. However, soil heterogeneity is not solely responsible for yield 61 

losses, and effective management zones should also incorporate other influencing factors to 62 

provide a comprehensive and holistic management solution. 63 

 64 

Traditional methods for soil characterization to support management zone delineation (Brogi et 65 

al., 2021; NRW GD, 2025) generally rely on laborious in-situ sampling and laboratory analysis, 66 

which may fail in capturing soil variability with sufficient detail (Kuang et al., 2012). In recent 67 
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years, advances in proximal soil sensing, defined as methods that utilize sensors positioned near 68 

or in direct contact with the soil (Adamchuk et al., 2017), have provided valid alternatives to direct 69 

soil sampling (Pradipta et al., 2022). In particular, non-invasive agro-geophysical methods such as 70 

electromagnetic induction (EMI) have proven suitable for management zone delineation due to the 71 

high mobility (Binley et al., 2015; Garré et al., 2021) and the fact that the measured apparent 72 

electrical conductivity (ECa) of the soil is related to key soil properties, such as soil salinity, soil 73 

water content, texture, compaction, and organic matter content (Corwin and Lesch, 2003; Abdu et 74 

al., 2008; Altdorff et al., 2017; Jadoon et al., 2015; Robinet et al., 2018; Zhu et al., 2010; von Hebel 75 

et al., 2018). Modern EMI devices are able to efficiently provide soil information for multiple 76 

depth ranges thanks to multi-coil instrumentation (Rudolph et al., 2015; von Hebel et al., 2014; 77 

Blanchy et al., 2024; Lueck and Ruehlmann, 2013; Corwin and Scudiero, 2019), especially when 78 

supported by a moderate amount of ground truth data (Brogi et al., 2019). However, the use of 79 

EMI alone can show limitations in capturing local aspects that have an impact on yield but that are 80 

not strongly influenced by soil variability. For instance, pest and weed infestations can drastically 81 

reduce crop productivity, and these factors may not correlate directly with soil variability (Becker 82 

et al., 2022; López‐Granados, 2011). Additionally, climate change impacts, such as altered 83 

precipitation patterns and temperature fluctuations, can affect crop health and yield in ways that 84 

EMI cannot detect (Pradipta et al., 2022). Finally, it is also important to stress that accurate EMI 85 

mapping generally requires optimal conditions like bare soil, favourable weather, and absence of 86 

confounding factors (James et al., 2003). 87 

 88 

An alternative to proximal soil sensing for the delineation of management zones is the use of 89 

remote sensing approaches, which enables efficient large-scale data acquisition without the need 90 
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for direct physical access to the investigated area (Weiss et al., 2020). By using sensors mounted 91 

on satellites, airplanes, or drones, remote sensing monitors parameters related to crop health and 92 

development (Jin et al., 2019; Liaghat and Balasundram, 2010). For example, vegetation indices 93 

such as the Normalized Difference Vegetation Index (NDVI) are generally well-established, 94 

simple, and effective proxies for crop health (Carfagna and Gallego, 2005; Stamford et al., 2023; 95 

Wang et al., 2020; Xue and Su, 2017). High-resolution (<5 m) data products from satellites are 96 

being increasingly used in precision agriculture (Mohammed et al., 2020; Trivedi et al., 2023). 97 

Also, remote sensing platforms like PlanetScope, Sentinel-2, and Landsat offer frequent revisit 98 

times, thus providing sufficient temporal resolution to track changes in plant health throughout the 99 

growing season (Hunt et al., 2019; Skakun et al., 2021). Despite these advantages, remote sensing 100 

data are affected by cloud cover or other sub-optimal meteorological conditions (Wilhelm et al., 101 

2000) and primarily capture above-ground information on plant health and biomass, and can thus 102 

struggle to provide direct information about the interplay between soil conditions and crop 103 

development. 104 

 105 

Several studies have explored a combination of EMI and remote sensing methods for the 106 

delineation of management zones. For example, von Hebel et al. (2021) combined EMI and drone-107 

based NDVI measurements and found that EMI-based management zones offered consistent 108 

insights into soil texture and water content, while the added value of NDVI greatly varied, mostly 109 

due to the timing of the drone measurements and thus on the specific crop conditions. In a similar 110 

study, Esteves et al. (2022) showed that integration of EMI and NDVI from Sentinel-2 (10 m 111 

resolution) effectively provided zones with distinct soil and crop nutrient characteristics. However, 112 

they reported a negative relationship between ECa and NDVI due to local magnesium imbalances 113 
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and vegetation stress. In addition to EMI and remote sensing, historical yield maps can help in 114 

identifying yield trends across years and different cultivated crops. For example, Ali et al. (2022) 115 

integrated seven years of yield data with Landsat-based NDVI and soil sampling over a 9 ha field, 116 

but ultimately could obtain only a limited subdivision of the field into two management zones with 117 

a relatively low resolution of 30 m. Generally, previous research highlighted that combining data 118 

from different sources provides a more comprehensive assessment of above- and below-surface 119 

factors affecting crop health (Corwin and Scudiero, 2019; Ciampalini et al., 2015), but a large 120 

variability of the results was found across different combinations of methodologies and local field 121 

conditions.  122 

 123 

As obtaining management zones from spatial datasets based on EMI or remote sensing data can 124 

be challenging, machine learning clustering algorithms have been widely used (Saifuzzaman et al., 125 

2019; Castrignanò et al., 2018; Chlingaryan et al., 2018; Zhang and Wang, 2023). For example, 126 

Wang et al. (2021) used supervised Random Forest classification for combining EMI data with 127 

environmental covariates to predict soil salinity. Similarly, Brogi et al. (2019) employed supervised 128 

learning to combine EMI with soil sampling and generate high-resolution soil maps for a 1 km² 129 

agricultural area. However, the results of supervised classification approaches may depend on the 130 

interpreter and often need expert knowledge as well as extensive ground-truth data for training 131 

(Liakos et al., 2018; Usama et al., 2019). K-means and ISODATA clustering are unsupervised 132 

methods used to delineate management zones (Bijeesh and Narasimhamurthy, 2020; Ylagan et al., 133 

2022; Tagarakis et al., 2013) but these approaches can be sensitive to initial conditions and struggle 134 

to handle non-linear relationships in datasets (Geng et al., 2020; Li et al., 2018). Thus, more 135 

advanced methods such as self-organizing maps (SOM) have been successfully used to analyse 136 
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complicated data structures provided by proximal and remote sensing data (Romero‐Ruiz et al., 137 

2024; Moshou et al., 2006; Taşdemir et al., 2012). A remaining key challenge of unsupervised 138 

methods is the definition of the optimal number of clusters. Widely used approaches such as the 139 

elbow and silhouette method (Saputra et al., 2020) often struggle when applied to non-linearly 140 

distributed or spatially complex datasets (Schubert, 2023), and may thus require subjective 141 

judgment or expert knowledge (Liang et al., 2012). To address this challenge, the Multi-Cluster 142 

Average Standard Deviation (MCASD) approach that relies on an evaluation of the intra-cluster 143 

variability has recently been introduced (O’Leary et al., 2023) and successfully applied to the 144 

integration of complex spatial datasets (O’Leary et al., 2024). However, many of these novel 145 

approaches have seen limited applications in agricultural contexts (Khan et al., 2021) and the added 146 

value of delineating management zones from datasets of different origin remains unaddressed 147 

(Koganti et al., 2024). 148 

 149 

In this study, the potential of delineating management zones by integrating multi-coil EMI data 150 

with satellite-based NDVI is explored for a single 70 ha agricultural field near Berlin, Germany. 151 

Management zones were derived using three data sources: i) ECa maps from nine different depths 152 

of investigation (DOI) obtained with EMI between 2020 and 2024, ii) seven NDVI images 153 

obtained from PlanetScope in 2019, and iii) a combination of EMI and NDVI data. Management 154 

zones were delineated using SOM while the optimal number of clusters was obtained with the 155 

MCASD method. In a following step, the number of clusters was refined using post-hoc analysis 156 

using a large dataset of soil samples and yield maps at 10 m resolution from 2011 to 2019. Finally, 157 

it was evaluated to what extent management zones derived from EMI, NDVI, or a combination of 158 

both represent soil characteristics and yield patterns using visual inspection and statistical analysis.  159 
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 160 

2 Materials and Methods 161 

2.1 Study area 162 

The study site is part of the patchCROP (patchCROP, 2020) landscape laboratory of the Leibniz 163 

Centre for Agricultural Landscape Research (ZALF) near Tempelberg, Brandenburg, Germany 164 

(52.4426 N, 14.1607 E, altitude 68 m). It is located in the transition zone between humid oceanic 165 

and dry continental climate. The long term average temperature from 1980 to 2020 was 8.3°C and 166 

the mean annual precipitation for the same period was 533 mm (DWD, 2021; Koch et al., 2023). 167 

The investigated field has an area of approximately 70 ha (Fig. 1). Until 2020, this field was 168 

managed as a single unit. In March 2020, the patchCROP experiment was established to study the 169 

impact of landscape diversification through the use of smaller field sizes, site-specific crop 170 

rotations, different field management practices, and the use of new technologies including 171 

proximal soil sensing, remote sensing, and robotic technologies (Grahmann et al., 2021). For this, 172 

thirty patches of 72 x 72 m were established within the investigated field (Donat et al., 2022) (Fig. 173 

1). In terms of geomorphology, the site is described as a young moraine landscape shaped by past 174 

glaciations, and characterized by an undulating relief and heterogeneous soil characteristics (Koch 175 

et al., 2023; Öttl et al., 2021; Meyer et al., 2019). The topsoil is predominantly sandy, but a more 176 

clayey layer is present at different depths in the subsoil (Hernández-Ochoa et al., 2024).  177 

 178 
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 179 

Figure 1. Overview of the patchCROP Study Area Tempelberg (ESRI, 2020). The yellow border 180 

indicates the boundary of the investigated field, whereas the green boxes indicate the thirty patches 181 

of the patchCROP landscape experiment. 182 

 183 

 184 
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2.2 Data collection and processing 185 

2.2.1 Yield data  186 

Georeferenced yield maps of nine growing seasons (2011-2019) were used. These yield maps were 187 

generated using a yield monitoring system (CLAAS Quantimeter, Hersewinkel, Germany) 188 

mounted on two different combine harvesters. From 2011 to 2013, data were collected using a 189 

CLAAS 580. From 2014 onwards, a CLAAS Lexion 770 TT was used. In the 2011 – 2019 period, 190 

the field was either cultivated with winter rye (2011, 2013, 2014, 2016, 2017, and 2019) or 191 

rapeseed (2012, 2015, and 2018). For additional details on data processing and yield map 192 

generation, readers are referred to Donat et al. (2022). The original yield data from Donat et al. 193 

(2022) were available as georeferenced yield data points with a spacing of ~10 m. These points 194 

were interpolated to a regular grid with 10 m resolution using ordinary kriging.  195 

 196 

2.2.2 Electromagnetic Induction (EMI) measurements 197 

Frequency-domain EMI devices generate a fixed-frequency alternating current in a transmitter 198 

coil, which produces a primary magnetic field. This primary magnetic field induces eddy currents 199 

in the soil, thus generating a secondary magnetic field. The primary and secondary magnetic fields 200 

are sensed by a receiver coil. The quadrature component of the ratio between the primary and 201 

secondary magnetic fields is directly proportional to the apparent electrical conductivity (ECa) of 202 

the ground (Keller and Frischknecht, 1966; Ward and Hohmann, 1988; McNeill, 1980). The 203 

measured ECa is strongly affected by soil properties such as salinity, water content, clay content 204 

(and thus texture), compaction, and to a lesser degree organic matter content and cation exchange 205 

capacity (Corwin and Lesch, 2005; Robinet et al., 2018). The depth sensitivity of EMI 206 

measurements depends on coil spacing and coil orientation. Larger spacing results in increased 207 
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depths of investigation (DOI), while the coil orientation influences the sensitivity to shallow or 208 

deep subsurface (Lavoué et al., 2010; Simpson et al., 2009). 209 

 210 

In this study, two EMI devices were used simultaneously: a CMD-Mini Explorer (GF Instruments, 211 

Brno, Czech Republic) with three receiver coils oriented in a vertical coplanar configuration 212 

(VCP), and a custom-made CMD-Mini Explorer – Special Edition equipped with six receiver coils 213 

oriented in a horizontal coplanar configuration (HCP). The VCP configuration is most sensitive to 214 

the shallow subsurface, with decreasing sensitivity as depth increases. In contrast, the HCP 215 

configuration is less sensitive to the shallow subsurface, with sensitivity peaking at a depth of 216 

approximately 0.4 times the coil separation (McNeill, 1980). As a rule of thumb, the DOI for the 217 

VCP setup is approximately 0.75 times the coil separation. For the HCP setup, the DOI is 218 

approximately 1.5 times the coil separation. For the set-up used here, the resulting DOI ranges 219 

from 0-24 to 0-270 cm. Details of the EMI set-up are summarized in Table 1. 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 
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Table 1. Details of the two EMI devices with coil number, orientation, separation, DOI, and 230 

frequency. 231 

EMI device Receivers Orientation Separation (cm) DOI (cm) Frequency (Hz) 

Mini Explorer 3 VCP 32 0-24 30 

  VCP 71 0-53  

  VCP 118 0-89  

Mini Explorer 6 HCP 35 0-52 25.17 

Special Edition  HCP 50 0-75  

  HCP 71 0-108  

  HCP 97 0-146  

  HCP 135 0-203  

  HCP 180 0-270  

 232 

Due to the ongoing PatchCROP experiment on small patches with variable cropping systems, it 233 

was not possible to cover the entire field in a single EMI campaign. EMI data were thus collected 234 

in four campaigns conducted between August 2022 and October 2024. During each campaign, the 235 

EMI devices were placed in sleds and warmed up for approximately 30 minutes before use. The 236 

sleds were then pulled by an all-terrain vehicle (ATV) at a speed of approximately 6 to 8 km/h. 237 

Data collection occurred at a frequency of 0.2 s, resulting in an inline spatial resolution of 0.25 to 238 

0.50 m. A track spacing of ~2.5 m was used within the experimental patches and a track spacing 239 

between 5 to 45 m (typically well below 10 m) was used in the rest of the field. A Real Time 240 

eXtended (RTX) center point differential global positioning system (DGPS) (Trimble Inc., 241 

Sunnyvale, United States) was used to record the position of the sleds with centimeter accuracy. 242 
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For more information about the setup for EMI measurements, the reader is referred to von Hebel 243 

et al. (2018). 244 

 245 

The measured ECa values were filtered using a Python-based method similar to the approach of 246 

von Hebel et al. (2014), which has been successfully applied in several studies (Brogi et al., 2019; 247 

Kaufmann et al., 2020; Schmäck et al., 2022; von Hebel et al., 2021). The first filter removes 248 

values that are deemed too high or too low based on user-defined thresholds (-50 and 50 mS/m in 249 

this study). A second filter divides the data into a user-defined number of bins (20 in this study) 250 

and removes the data from bins with a low fraction of measurements (<1% in this study). In a third 251 

step, a spatial filter is used to identify and discard ECa values that deviate from adjacent positions 252 

more than a given amount (1 mS/m in this study) to avoid unrealistically high lateral ECa 253 

variations. After the application of these three filters, ~5% of the measured ECa values were 254 

removed although this value varied between measurement campaigns.  255 

 256 

Given that the EMI data were acquired in four campaigns with different environmental conditions 257 

(e.g. soil water content, soil temperature), each EMI acquisition campaign was separately 258 

normalized by using a standardized z-score normalization method as used by Rudolph et al. (2015):  259 

 260 

𝐸𝐶𝑎𝑧,𝑖 = (𝐸𝐶𝑎𝑖 − 𝜇𝑖) 𝜎𝑖⁄          (1) 261 

      262 

where 𝐸𝐶𝑎𝑧,𝑖 is the normalized 𝐸𝐶𝑎 value for the i-th campaign, 𝐸𝐶𝑎𝑖 is the measured ECa value 263 

for the i-th campaign, 𝜇𝑖 is the mean ECa value of the i-th campaign, and 𝜎𝑖 is standard deviation 264 

of ECa values for the i-th campaign. Following normalization, manual cleaning was conducted in 265 
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ArcMap v10.8.2 (ESRI, Redlands CA, USA) to remove points typically occurring at the start and 266 

end of each campaign or in short periods where the EMI system was left stationary. In the final 267 

step, the normalized data for each of the nine coil configurations were interpolated to a regular 3 268 

by 3 m grid using ordinary Kriging with a gaussian semivariogram and merged into a single 269 

multidimensional raster mosaic dataset. 270 

 271 

2.2.3 Remotely sensed NDVI data 272 

High-resolution PlanetScope Level 3B satellite images from the 2019 growing season (winter rye) 273 

were used to obtain NDVI maps. Between 01/01/2019 and 31/07/2019, 48 cloud free images were 274 

available. Seven of these images were selected to represent crop development during the growing 275 

season. PlanetScope image products are pre-processed and have already undergone radiometric 276 

and atmospheric corrections. No additional pre-processing was required. The PlanetScope sensor 277 

captures spectral information in four bands: blue (B1), green (B2), red (B3), and near-infrared 278 

(NIR - B4) with a spatial resolution of 3 m. The normalized difference vegetation index (NDVI) 279 

was calculated using the reflectance in the red (R) and near-infrared bands (NIR): 280 

 281 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅) (𝑁𝐼𝑅 + 𝑅)⁄         (2) 282 

 283 

The resulting NDVI values range from -1 to 1, where values close to 1 indicate healthy vegetation, 284 

and values close to zero or negative values generally represent non-vegetated surfaces, senescent, 285 

stressed or unhealthy plants or dry vegetation, or features such as clouds and water that exhibit 286 

lower NIR reflectance (Wasonga et al., 2021).  287 

 288 
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2.2.4 Soil sampling and data on soil characteristics 289 

Extensive soil sampling campaigns were conducted between 2020 and 2024, focusing on the 290 

experimental patches within the 70 ha field. At 160 locations, soil samples up to 100 cm depth 291 

were obtained using a Pürckhauer soil auger with an 18 mm inner diameter. The soil properties 292 

analyzed in this study included the depth of soil texture transition, defined as the depth (in cm) at 293 

which the sandy top layer ends (EOS layer (end of sandy layer) in the following), as well as the 294 

soil texture (percentages of sand, silt, and clay) of the top sandy layer and the layer below. Soil 295 

texture was determined by using the wet sieving and sedimentation method (ISO, 2002). The 296 

particle size distribution was defined according to the IUSS Working Group 150 WRB guidelines 297 

(IUSS Working Group, 2015). When multiple subsamples for a single layer were available at a 298 

given location, weighted averages of sand, silt, and clay fraction for the whole layer were obtained 299 

using the thickness of each subsample. 300 

 301 

2.3 Clustering for delineation of management zones 302 

Three different data combinations were created and investigated: a) EMI maps, b) time-series of 303 

NDVI maps, and c) a combination of the EMI maps and NDVI maps. Before clustering, a standard 304 

preprocessing step of normalization was applied on each dataset to ensure that variables with 305 

different ranges and units contribute equally in the classification process. The choice of 306 

normalization method can be particularly important when combining datasets with different scales, 307 

such as EMI and NDVI, to prevent dominance of one dataset over the other and to maintain the 308 

integrity of the input features In this study, a min-max scaling was applied, where all values were 309 

rescaled to a standard range between 0 and 1 (Patro and Sahu, 2015).  310 

 311 
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For EMI, a single normalization was applied to the nine ECaz maps. In this case, the min-max 312 

normalization used the minimum (ECaz min) and maximum value (ECaz max) from all nine 9 maps: 313 

 314 

𝐸𝐶𝑎𝑧′ =  
𝐸𝐶𝑎𝑧−𝐸𝐶𝑎𝑧 𝑚𝑖𝑛

𝐸𝐶𝑎𝑧 𝑚𝑎𝑥− 𝐸𝐶𝑎𝑧 𝑚𝑖𝑛
           (3) 315 

 316 

where ECaz is the original value, and ECaz' is the normalized value. For NDVI, each of the seven 317 

NDVI maps was normalized independently:  318 

 319 

𝑁𝐷𝑉𝐼′ 𝑖 =  
𝑁𝐷𝑉𝐼 𝑖− 𝑁𝐷𝑉𝐼 𝑖,𝑚𝑖𝑛

𝑁𝐷𝑉𝐼 𝑖,𝑚𝑎𝑥− 𝑁𝐷𝑉𝐼 𝑖,𝑚𝑖𝑛
          (4) 320 

 321 

where NDVI'i is the normalized value for the i-th map, NDVIi is the original value of NDVI of the 322 

i-th map, NDVIi, min and NDVIi, max are the minimum and maximum values of the i-th NDVI map. 323 

This difference in normalization was necessary to preserve the depth-dependent structure of EMI 324 

data, as ECa represents a bulk measurement where each reading is influenced by adjacent depths. 325 

In contrast, NDVI measurements are independent and acquired at different time points, and thus 326 

reflect temporal variations in vegetation dynamics. 327 

 328 

In this study, a Self-Organizing Map (SOM), an unsupervised machine learning classification 329 

technique, was used for clustering (Kohonen, 2013). SOM is a centroid-based clustering technique, 330 

similar in some aspects to K-means clustering (Celebi et al., 2013). While K-means clustering 331 

assigns each data point to a cluster based on the minimum distance to the cluster centroid in the 332 

data space, SOM utilizes an artificial neural network to organize and visualize high-dimensional 333 

data (Valentine and Kalnins, 2016). The key distinction lies in how SOM projects the data onto a 334 
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two-dimensional grid while preserving the topological relationships of the input data. Each data 335 

vector in SOM is assigned to a numerical cluster, where the cluster centre is representative of all 336 

the data points associated with it. These cluster centres, which have dimensions similar to the input 337 

data vectors, adjust iteratively during the training process to better represent the underlying data 338 

distribution. This approach allows SOM to effectively map complex data patterns while 339 

maintaining the spatial relationships between clusters.  340 

 341 

The Multi-Cluster Average Standard Deviation (MCASD) approach was used to determine the 342 

optimal number of clusters for SOM. This method evaluates the stability of the cluster centres in 343 

the dataspace over multiple clustering attempts as the number of clusters increases. This metric 344 

assumes that an appropriate number of clusters for a dataset is any at which the cluster centres do 345 

not vary significantly when the clustering algorithm is run multiple times. In this study, MCASD 346 

analysis was tested with a maximum number of 20 clusters with 100 SOM clustering runs for each 347 

number of clusters to calculate the MCASD stability metric. Upon completion of MCASD 348 

analysis, the highest number of clusters with a low MCASD metric is selected, as this represents 349 

the maximum resolution of the spatial variability that can be obtained through clustering (O’Leary 350 

et al., 2023). This clustering process was performed in MATLAB v2023a (MathWorks, Natick, 351 

Massachusetts, USA). 352 

 353 

2.4 Statistical analysis 354 

To assess the differences between clusters derived from the three datasets, a one-way analysis of 355 

variance (ANOVA) was conducted in SPSS (IBM, Chicago, IL, United States). This ANOVA 356 

analysis was used to identify whether there were significant differences between clusters in terms 357 
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of soil properties or yield using a significance threshold of p < 0.05. Following the ANOVA, a 358 

Tukey's HSD (Honestly Significant Difference) test was used as a post-hoc analysis to determine 359 

which of the clusters were significantly different. In this step, the depth of the sandy layer, the 360 

texture of the overlying layer, the texture of the layer below, and the yield data were used. Thus, 361 

this step is complimentary to the previous cluster selection step with MCASD, which did not 362 

consider soil and yield data. Clusters that did not exhibit significant differences were merged 363 

during a reclassification step, refining the clustering results to ensure that each final cluster was 364 

distinct and statistically meaningful, both in terms of the input datasets and in terms of soil 365 

properties and yield. The latter was confirmed using two tailed t-test between matching layers of 366 

adjacent soil classes in the reclassified map. 367 

 368 

3 Results and Discussion 369 

3.1 Yield, ECaz, and NDVI maps 370 

The yield, ECaz, and NDVI maps highlight unique aspects of field heterogeneity and offer insights 371 

into subsurface soil properties, above-ground crop performance, and their combined effects on 372 

productivity. In the following, these input datasets for management zone delineation are briefly 373 

introduced. 374 

 375 

3.1.1 Yield maps 376 

Figure 2 presents nine years (2011–2019) of yield maps interpolated at a 10 m resolution to 377 

represent spatial variability across the field. The maps illustrate distinct patterns of high and low 378 

productivity areas. Yield variability is consistent across multiple years, although variations in 379 

measured yield can be observed between years. The years 2012 and 2013 show lower quality yield 380 

https://doi.org/10.5194/egusphere-2025-827
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 

19 
 

data due to incomplete datasets (Donat et al., 2022) caused by equipment issues and environmental 381 

challenges during data collection. Despite these limitations, the maps successfully capture the 382 

general spatial yield trends and heterogeneity of the field. The high and low yield zones align with 383 

known intrinsic field characteristics, such as soil texture, moisture retention, and nutrient 384 

availability (Grahmann et al., 2024). These yield patterns will serve as validation for comparing 385 

the management zones derived from EMI and NDVI data, as both datasets aim to explain the 386 

variability in productivity. 387 

 388 
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 389 

Figure 2: Nine interpolated yield maps (2011–2019) for the patchCROP field showing spatial 390 

variability of crop yield at a 10 m resolution. The maps illustrate yield distributions for winter rye 391 

(2011, 2013, 2014, 2016, 2017, 2019) and rapeseed (2012, 2015, 2018). High-yield areas (green) 392 

and low-yield areas (red) reflect the inherent field heterogeneity. Variability is observed both 393 

within and across years, influenced by crop type, management practices, and environmental 394 

conditions. The yield range for each year is provided in decitonnes per hectare (dt/ha). 395 
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 396 

3.1.2 EMI maps 397 

Nine ECa maps with 3 m resolution were obtained from the interpolation of the nine coil 398 

configurations recorded during the EMI measurements. The results for one coil configuration 399 

(HCP 050 cm) are exemplary shown in Fig. 3 before and after normalization. The study area was 400 

measured under varying conditions in terms of soil temperature, soil moisture, and effect of 401 

agricultural management. This resulted in differences of average ECa and spatial patterns (Fig. 402 

3a). Although it is known that temperature affects measured ECa (Pedrera-Parrilla et al., 2016; 403 

Vogel et al., 2019), it was not possible to perform a comprehensive temperature correction in this 404 

study due to the lack of sufficient soil temperature data. Moreover, it has been shown that 405 

temperature correction has limitations compared to normalization methods when the dataset is 406 

composed of various depths of investigation and is affected by multiple agricultural management 407 

practices (Brogi et al., 2019; Rudolph et al., 2015). Thus, Z-score normalization was applied for 408 

each measurement campaign to reduce the differences between data measured on different days. 409 

Figure 3b shows the normalized EMI map for the same coil configuration as shown in Fig. 3a. The 410 

normalization successfully harmonized the data, minimizing the influence of varying soil moisture 411 

and temperature during acquisition, resulting in more consistent spatial patterns that better 412 

represent subsurface soil properties. However, some localized artefacts in the normalized maps 413 

still persist. For example, areas near the field boundaries or experimental patches exhibit subtle 414 

inconsistencies that may be influenced by edge effects or localized disturbances. Despite these 415 

minor limitations, the normalized ECa maps provide a robust foundation for further analysis and 416 

management zone delineation. 417 

 418 
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 419 

Figure 3. Comparison of apparent electrical conductivity (ECa) maps before and after z-score 420 

normalization for the HCP 050 configuration with (a) the non-normalized ECa map, where the 421 

zoomed-in section highlights the influence of varying environmental conditions such as soil 422 

moisture and temperature leading to inconsistent patterns and (b) the z-score normalized ECa map, 423 

which minimizes the influence of these external factors.  424 

 425 

Figure 4 shows the nine normalized ECaz maps for the VCP and HCP configurations. These maps 426 

display heterogeneous patterns of ECa, primarily attributed to variations in soil characteristics in 427 

space and with depth. A prominent feature is the elongated channel extending from the northeast 428 

to the southwest of the field, which represents areas with lower ECaz values. This feature is 429 

associated with sandy soils that generally hold less water and nutrients, indicating a coarse-430 

textured zone with lower electrical conductivity. In contrast, the northwest and southeast regions 431 

of the field exhibit medium to high ECaz values, which may reflect areas of higher moisture content 432 

and finer soil particles, such as loamy textures. Additionally, in the northeastern part of the field, 433 

a more heterogeneous area with short-scale variations can be observed where the ECaz values vary 434 

considerably between the nine maps. For the shallow VCP configurations, this area shows low 435 
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ECaz values, which are indicative of sandy soils or dry conditions near the surface. For the deeper 436 

HCP configurations, this same area shows higher ECaz values, suggesting an increase in soil 437 

moisture or finer soil texture at greater depths. This pattern highlights the layered soil 438 

heterogeneity in this region, with subsurface properties differing significantly from the surface. 439 

Overall, the EMI data reveal a high degree of spatial variability and provide valuable insights into 440 

subsurface soil variability, which is critical for precision agricultural management. 441 

 442 

https://doi.org/10.5194/egusphere-2025-827
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 

24 
 

 443 

Figure 4. Normalized apparent electrical conductivity (ECaz) maps derived from electromagnetic 444 

induction (EMI) measurements using multiple coil separations in vertical coplanar (VCP) and 445 

horizontal coplanar (HCP) configurations. These maps highlight the spatial variability of 446 

subsurface soil properties, with higher ECaz values (red) indicating areas of higher moisture 447 

retention or finer soil textures, and lower ECaz values (blue) corresponding to sandy soils with 448 

lower conductivity. 449 

450 
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3.1.3 NDVI maps 451 

All available PlanetScope satellite images for the growing season 2019 (winter rye) were visually 452 

evaluated to assess their usability. Before April 2019, no meaningful patterns in NDVI were 453 

observed due to the relatively short height (10 to 20 cm) and low biomass of winter rye and the 454 

lack of water- or nutrient-induced stress in this early growth stage. Moreover, images from July 455 

2019 were excluded from the analysis as the crop had reached maturity, and no further growth or 456 

development was evident. By this time, the physiological activity of the plants had ceased, and 457 

harvesting was completed on 04 August 2019.  458 

 459 

After this initial analysis, seven NDVI images spanning the period between April and June, hence 460 

from flowering to maturity, were selected for further analysis. The descriptive statistics of the 461 

NDVI data are given in Table 2 and show a high degree of temporal variation. The NDVI maps 462 

shown in Fig. 5 strongly resemble those of the yield maps, especially towards the end of the 463 

growing season. Following crop development during the growing season, the mean NDVI peaked 464 

on 30 April 2019 (221 days after sowing). Afterwards, NDVI values gradually declined as the crop 465 

approached maturity, which is consistent with physiological changes during growth of winter rye 466 

(Hatfield and Prueger, 2010). Figure 5 also illustrates the temporal development of the spatial 467 

variation of NDVI, again pointing to the spatial heterogeneity of crop performance within the field 468 

(especially Figure 5d-g) where areas of lower NDVI are associated with poorer crop performance 469 

and areas of higher NDVI indicate healthier crops. Generally, the key patterns in crop performance 470 

are in good agreement with the patterns observed in the EMI maps. Areas with persistently low 471 

NDVI values generally correspond to areas with low ECaz, and areas with high NDVI values 472 

mostly correspond to areas with high ECaz. However, differences between patterns in NDVI and 473 

EMI can also be found. This is expected given that the dynamic changes in crop vigour and 474 
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vegetation health shown by NDVI are not solely related to subsurface soil conditions captured by 475 

EMI. For example, specific areas with low NDVI values were observed in regions of medium to 476 

high ECaz, possibly reflecting localized crop stress due to non-soil-related factors such as disease, 477 

waterlogging, or nutrient imbalances. 478 

 479 

Table 2. Summary of remotely sensed NDVI imagery and corresponding dates after sowing. 480 

Date of acquisition Days after sowing Mean NDVI Max NDVI Min NDVI 

05 April 2019 196 0.67 0.78 0.42 

16 April 2019 207 0.72 0.85 0.46 

30 April 2019 221 0.76 0.88 0.38 

11 May 2019 232 0.61 0.71 0.34 

30 May 2019 251 0.58 0.66 0.41 

12 June 2019 263 0.49 0.65 0.31 

24 June 2019 276 0.49 0.71 0.30 

 481 
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 482 

Figure 5. Seven NDVI maps derived from PlanetScope satellite imagery representing the temporal 483 

variability in vegetation development during the 2019 growing season. The images, dated from 484 

05/04/2019 to 24/06/2019, capture critical crop growth stages, including flowering and maturity.  485 

 486 

3.2 Clustering of EMI and NDVI 487 

The MCASD analysis for the three datasets provided a robust method to determine the optimal 488 

number of clusters (Fig. 6). The analysis suggested a maximum of five clusters for the EMI data 489 

(Fig. 6b). These clusters reflect differences in subsurface properties such as soil texture, moisture, 490 
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and compaction. Cluster 1 corresponds to areas with the highest ECaz values, which gradually 491 

decrease with each subsequent cluster. Cluster 5 represents the lowest ECaz values. For NDVI (Fig. 492 

6e), a maximum of four clusters was selected. While a five-cluster solution was initially identified 493 

as viable for NDVI, increasing the number of clusters beyond four did not significantly reduce 494 

variability. This made the four-cluster solution more practical and efficient for representing spatial 495 

variability in the NDVI data. Cluster 1 identifies areas with relatively high NDVI values, indicative 496 

of healthy, dense vegetation and higher crop performance. NDVI values progressively decrease 497 

with higher cluster numbers, with cluster 4 showing the lowest values, representing stressed or less 498 

productive areas. The combined EMI and NDVI dataset resulted in four clusters (Fig. 6h). Visual 499 

inspection suggests that both the EMI- and NDVI-based patterns are preserved in the combined 500 

dataset, likely due to the min-max scaling applied to standardize each dataset before MCASD 501 

analysis (see Appendix A). Clusters 1 and 2 represent areas with high values for both ECaz and 502 

NDVI, while cluster 4 identifies zones with low values for both variables, integrating both above-503 

ground and subsurface variability effectively.  504 

 505 
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 506 

Figure 6. Clustering results for the PatchCROP experimental site. (a) MCASD analysis showing 507 

appropriate cluster numbers for EMI data. (b) Spatial distribution of original EMI clusters (ESRI, 508 

2020). (c) Spatial distribution of refined EMI clusters after post-hoc analysis. (d) MCASD analysis 509 

for NDVI data. (e) Spatial distribution of original NDVI clusters. (f) Spatial distribution of refined 510 

NDVI clusters after post-hoc analysis. (g) MCASD analysis for the combined (EMI + NDVI) 511 

dataset. (h) Spatial distribution of the original clusters based on the EMI and NDVI data. (i) Spatial 512 

distribution of the refined clusters for the combined dataset after post-hoc analysis.  513 

 514 

 515 

 516 
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3.3 Post-Hoc analysis 517 

Starting from the optimal number of clusters identified with MCASD, a post-hoc analysis based 518 

on the nine available yield maps and the point-scale soil samples was conducted. The aim was to 519 

verify that the cluster are not only statistically separated in terms of the input data (i.e., EMI, NDVI 520 

or a combination of EMI and NDVI), but also in terms of yield and soil characteristics (i.e., texture 521 

of the first and second layers, depth to the second layer). For the EMI-based clusters, 18 soil 522 

sampling locations were within Cluster 4 and only four of these had an EOS layer within 100 cm 523 

depth. The other 14 locations had EOS layer below the sampling depth of 100 cm and thus no 524 

textural values for the lower layer. Thus, the EOS layer depth of Cluster 4 was assumed to be below 525 

100 cm and the texture of the lower layer was excluded from further analysis to have a more 526 

consistent characterization of the prevailing soil characteristics.  527 

 528 

Post-hoc analysis indicated that not all clusters were significantly different from each other, either 529 

in terms of yield or soil characteristics, for all three datasets. Based on the results of the post-hoc 530 

analysis, clusters were either left separated when yield or soil characteristics were statistically 531 

different (p < 0.05) or grouped together when no statistical separation was identified. For example, 532 

in the EMI-based clusters, Clusters 1, 2, and 3 had at least one significant difference in texture, 533 

EOS layer, or yield. On the contrary, cluster 4 and 5 did not show statistically significant 534 

differences. Thus, Cluster 4 and 5 were merged together and the resulting EMI-based cluster map 535 

had four clusters with statistically significant separation of input data (i.e., EMI), yield, and soil 536 

characteristics. A more detailed breakdown of this post-hoc analysis and the resulting merging 537 

decisions is provided in Appendix B. 538 

 539 
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The resulting refined maps (Fig. 6c, f and i) now have clusters that are statistically separated in 540 

terms of the input dataset (i.e., EMI and NDVI) but also in terms of the target variables, which are 541 

yield and soil characteristics. Therefore, they are referred to as management zones instead of 542 

clusters from this point onwards. These management zones maps appear to be a simplification of 543 

the original clustered maps (Fig. 6b, e and h), but they now provide a more holistic understanding 544 

of the field by integrating below-ground (EMI) and above-ground (NDVI) information with yield 545 

and soil data.  546 

 547 

3.4 Assessment of management zones derived from different datasets 548 

For each management zone of the maps derived from EMI, NDVI, and a combination of EMI-549 

NDVI, Table 3 shows the average yield between 2011 and 2019 and average soil characteristics, 550 

specifically the depth of soil texture transition EOS, and the textural fractions (percentages of sand, 551 

silt, and clay) of two layers up to 100 cm depth. The average yields of Table 3 vary considerably 552 

between different years and follow a general trend of decreasing yields with increasing cluster 553 

number. Thus, yields decrease with decreasing ECaz and NDVI.  554 

 555 

 556 

 557 

 558 

 559 
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Table 3. Average values of yield (dt/ha) and soil properties for the management zones (MZs) 560 

derived from EMI, NDVI, and a combination of EMI and NDVI. 561 

   EMI NDVI EMI-NDVI 

Y
ie

ld
 

 MZs 1 2 3 4 1 2 3 1 2 3 

 2011 49.5 44.7 46.5 31.7 55.9 41.1 27.5 50.7 33.1 25.7 

 2012 53.4 53.1 52.6 38 57.9 52.2 34.4 56.2 41.2 32.6 

 2013 106.3 105.6 106.5 98.1 111.1 104.9 94.49 108.8 99.1 93.4 

 2014 86.4 83.9 86.3 72.5 95.3 78.5 69.0 89.3 72.5 67.8 

 2015 55.1 53.7 51.0 28.5 62.9 50.1 22.2 59.1 31.1 20.5 

 2016 94.0 93.1 90.2 62.3 108.5 85.2 53.4 101 61.4 53.0 

 2017 78.7 76.0 73.7 47.9 89.4 69.4 41.0 83.3 48.5 39.5 

 2018 40.3 39.6 38.8 26.9 44.8 37.6 23.7 42.6 29.0 21.9 

 2019 71.0 69.1 67.2 48.1 80.2 62.5 43.1 74.6 47.7 42.2 

S
o

il
 c

h
a

ra
ct

er
is

ti
cs

 L
a

y
er

 1
 

(a
b

o
v

e 
E

O
S

) Sand % 68.2 72.4 78.1 86.2 68.6 79.5 87.2 69.8 88.4 85.2 

Silt % 23.3 20.0 16.1 9.6 23.0 15.2 8.9 22.2 8.1 10.4 

Clay % 8.5 6.9 5.7 4.1 8.0 5.2 3.8 7.7 3.4 4.3 

 

Depth 

(cm) 

54.0 66.9 73.1 100 62.7 71.0 87.4 63.8 77.0 100 

L
a

y
er

 2
 

(b
el

o
w

 E
O

S
) Sand % 58.3 58.0 60.6 NA 58.1 57.8 66.1 58.1 64.9 NA 

Silt % 23.0 23.2 21.9 NA 23.1 23.1 19.3 23.1 19.9 NA 

Clay % 18.6 18.7 17.5 NA 18.7 19.0 14.5 18.8 15.1 NA 

 562 

Figure 7 shows the variation in rye yield (dt/ha) for the management zones derived from different 563 

data sources for the year 2019, which is considered representative for most previous years while 564 

also allowing a direct comparison with the NDVI data for the 2019 growing season. For the EMI-565 

based management zones (Fig. 7a), the yield distributions for the zones 1-3 are relatively similar, 566 

with overlapping interquartile ranges and medians. This indicates that, in the investigated area, 567 

EMI-based management zones are more reflective of subsurface soil properties than yield 568 
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variability. However, zone 4 showed significantly lower yields, corresponding to sandy soils with 569 

poor moisture retention (see Table 3). The NDVI-based management zones (Fig. 7b) demonstrate 570 

stronger differentiation in yield distribution and a more consistent decline in yield between zones, 571 

reflecting the ability of NDVI to capture above-ground vegetation vigour and crop health. In 572 

particular, zone 2 reflects an intermediate yield zone between zone 1 and 3, showcasing the ability 573 

of NDVI to differentiate changes in crop performance. The management zones derived from 574 

combining EMI and NDVI (Fig. 7c) offer narrower interquartile ranges, particularly in zone 2, 575 

compared to NDVI-based management zones. This indicates that the integration of EMI and NDVI 576 

provides a more consistent and stable representation of yield variability, combining subsurface soil 577 

properties with above-ground dynamics. Although NDVI alone offers slightly more pronounced 578 

yield differentiation, the combined dataset balances both subsurface and vegetation-related factors 579 

effectively, making it a robust approach for management zone delineation. Similar boxplots for 580 

additional years are provided in Appendix C. 581 

 582 
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 583 

Figure 7. Boxplots illustrating rye yield (dt/ha) for 2019 across management zones (MZs) 584 

derived from (a) EMI, (b) NDVI, and (c) a combination of EMI and NDVI datasets. 585 

 586 

The refined management zones can be associated with a typical soil profile based on the average 587 

soil characteristics (Fig. 8). The soil profiles show the textural properties of the first two soil layers 588 

and the depth of the interface between these layers (EOS) up to a depth of 100 cm. In some profiles, 589 

the EOS layer reaches 100 cm, and thus the textural properties of the second layer are not available. 590 
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In case of the EMI-based zones (Fig. 8a-b), zone 1 is characterized by generally higher ECaz 591 

values, and identifies areas with a substantial average clay content, especially in the second soil 592 

layer (18.6%). Moreover, the sandier top layer is rather shallow and starts at around 54 cm depth. 593 

Moving from zone 1 to zone 4, ECaz generally decreases. At the same time, the depth of the EOS 594 

layer becomes deeper while the clay and silt content of the soil decreases and the sand content 595 

increases. In zone 4, the average clay content up to 100 cm is 4.1%, while the sand content is 596 

86.2%. In the case of the NDVI-based management zones (Fig. 8c-d), the three zones appear to be 597 

more indicative of crop development, which results in typical soil profiles with differences that 598 

seem less pronounced compared to the case of EMI-based zonation. In this case, NDVI is generally 599 

higher in Cluster 1 and lowest in Cluster 3. The change in soil characteristics between zones 600 

follows a similar trend compared to that of EMI-based zones. The depth of the interface between 601 

soil layer 1 and 2 increases from 62.7 to 87.4 cm from zone 1 to 3, while the sand content of both 602 

layers also increases (from 68.6 to 87.2 % and 58.1 to 66.1 %, respectively). The management 603 

zones derived from the combined EMI-NDVI dataset (Fig. 8e-f) have typical soil profiles that are 604 

similar to those based on NDVI. Also, the sand, silt, and clay content of the first soil layer appear 605 

to be rather similar. However, the range of the depth of the interface between soil layer 1 and 2 is 606 

higher for the EMI-NDVI clustered map (63.8 to 100 cm) compared to that of NDVI-based profiles 607 

(62.7 to 87.4 cm). At the same time, the difference in texture between the second soil layer of 608 

Clusters 1 and 2 is stronger in the profiles based on a combination of EMI and NDVI data (see 609 

Table 3). These two factors show that the management zones from EMI and NDVI have a relatively 610 

high variation between soils of different management zones, which is an improvement compared 611 

to the case of the NDVI-based management zones. 612 
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 613 

Figure 8. Final management zone maps derived from (a) EMI, (c) NDVI, and (e) a combination 614 

of EMI and NDVI datasets. Each zone represents areas with similar subsurface and/or above-615 

ground characteristics. (b, d, f) Corresponding soil profiles for each management zone, detailing 616 

soil texture (sand-silt-clay %), dotted lines between zones indicate depth of textural change (Layer 617 

1: above EOS; Layer 2: below EOS) and error bar represents the standard error. The soil profiles 618 

illustrate significant variability between zones, providing critical insights for field management. 619 

 620 

https://doi.org/10.5194/egusphere-2025-827
Preprint. Discussion started: 28 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 

37 
 

In a final step, statistical validation of the management zones was conducted using pairwise t-tests 621 

to evaluate the degree of significant differences in yield and soil properties across consecutive 622 

zones. The results are summarized in Table 4. A pairwise t-test for neighbouring zones derived 623 

from EMI indicated that the yield of 2012, 2013, and 2016 was not significantly different between 624 

zone 1 and zone 2 (p = 0.603, 0.060, 0.253) while the yield of 2012 was not significantly different 625 

between zone 2 and 3 (p = 0.209). All other pairwise comparisons indicated significant differences 626 

in mean yield. The textural composition of layer 1 was significantly different between all EMI-627 

derived zones. On the contrary, the depth of top layer was not significantly different between zone 628 

2 and 3 (p = 0.167). In addition, the composition of soil layer 2 was not significantly different 629 

between zone 1 and 2 (p of 0.498 for sand, 0.636 for silt, and 0.805 for clay).  630 

 631 

The pairwise t-test for between neighbouring zones based on NDVI indicated that differences in 632 

yield among all investigated years were statistically significant. On the contrary, both the depth of 633 

the top layer and the composition of soil layer 2 were not significantly different between zone 1 634 

and 2 (p of 0.147 for depth, 0.558 for sand, 0.986 for silt, and 0.627 for clay). These results show 635 

that EMI-based zones subdivided the area in one additional class and provided a more 636 

comprehensive representation of soil properties up to 100 cm compared to the NDVI-based zones 637 

for the investigated field. At the same time, the NDVI-based zones offered a better representation 638 

of yield from 2011 to 2019. Nonetheless, both the maps based on EMI and on NDVI offer valuable 639 

information. 640 

 641 

The pairwise t-test between neighbouring zones based on the combined EMI-NDVI dataset 642 

showed that the three zones were significantly different for both yield and soil characteristics. This 643 
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indicates that integrating EMI and NDVI datasets allows for the delineation of zones that are robust 644 

in representing both yield variability and soil heterogeneity. Moreover, a visual inspection of the 645 

management zones maps of Fig.8 shows that both maps based solely on EMI or NDVI are affected 646 

by West-East oriented patterns due to measurement direction for EMI and tractor lines in NDVI. 647 

These features are not present in the management zone map that integrates EMI and NDVI, 648 

suggesting that it also provides a representation of the field that is less affected by external factors. 649 

These results underscore the added value of integrating complementary datasets to capture the full 650 

spectrum of variability within the field, supporting more informed and effective precision 651 

agriculture practices. 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 
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Table 4. Results of the pairwise t-tests for yield and soil properties between management zones 663 

derived from EMI, NDVI, and EMI-NDVI. Bold font indicates significant differences. 664 

   EMI NDVI EMI - NDVI 

  Cluster 1vs2 2vs3 3vs4 1vs2 2vs3 1vs2 2vs3 

Y
ie

ld
 

2011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2012 0.603 0.209 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2013 0.060 0.008 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2014 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2015 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2016 0.253 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2017 < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2018 0.039 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2019 0.002 0.003 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

S
o

il
 

L
a

y
er

 1
 

(a
b

o
v

e 
E

O
S

) Sand % < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Silt % < 0.001 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Clay % < 0.001 0.014 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

 Depth 

(cm) 

0.004 0.167 NA 0.147 0.004 0.002 NA 

L
a

y
er

 2
 

(b
el

o
w

 E
O

S
) Sand % 0.498 0.010 NA 0.558 < 0.001 < 0.001 NA 

Silt % 0.636 0.009 NA 0.986 0.004 0.003 NA 

Clay % 0.805 0.056 NA 0.627 < 0.001 < 0.001 NA 

 665 

 666 

3.5 Limitations and perspectives for future work 667 

This study successfully demonstrated the integration of EMI and NDVI datasets for the delineation 668 

of management zones, but some limitations are still present and should be addressed in future 669 

research. The EMI data were collected during different campaigns under varying environmental 670 

conditions (e.g., soil temperature and moisture), and thus required z-score normalization to 671 
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minimize variability. While effective in this study, this approach may not fully account for certain 672 

external factors such as the impact of different management practices in different parts of the field. 673 

Similarly, the NDVI dataset was limited to the 2019 growing season due to the availability of 674 

PlanetScope imagery, which became accessible for this field only in 2019. Furthermore, the field 675 

was subdivided into smaller experimental patches after 2019, complicating data consistency for 676 

subsequent years. While the 2019 dataset is representative of the investigated area, relying on a 677 

single season of NDVI data may not fully capture interannual variability driven by climatic 678 

conditions or crop management practices. Incorporating NDVI data from multiple years in future 679 

studies would enable a more comprehensive analysis of temporal dynamics and their impact on 680 

management zone delineation to capture yield and soil variability. Another limitation is the 681 

distribution of soil sampling locations. Although the 160 sampling points provided valuable 682 

insights, leveraging EMI-based maps to guide targeted soil sampling could improve spatial 683 

representativeness. Additionally, while EMI in this study had a depth of investigation of up to 270 684 

cm, soil sampling was limited to 100 cm depth, potentially missing soil heterogeneity that can 685 

affect crops. Another factor was the data normalization before clustering, which was essential for 686 

obtaining meaningful results in this study (see Appendix A). Without adequate scaling, one data 687 

source can dominate the final product and render the other data sources less useful. This seems 688 

especially important in precision agriculture applications where datasets typically originate from 689 

diverse sources. 690 

 691 

Future studies should focus on improving the temporal consistency of data collection and 692 

increasing the density and depth of soil sampling. Long-term monitoring using datasets from 693 

multiple years could provide insights into the temporal stability of management zones and their 694 
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relationship with yield. Additionally, the outputs of this study, such as detailed management zone 695 

maps and soil characterization data, can be integrated into agroecosystem models to simulate and 696 

predict the impact of different management strategies under future environmental and climatic 697 

conditions. These models could help optimize irrigation, fertilization, and other field management 698 

practices, further supporting decision-making for sustainable and resource-efficient agriculture.  699 

 700 

4 Conclusions 701 

This study integrated proximal soil sensing (EMI) and remote sensing (NDVI) data to delineate 702 

high-resolution management zones in a 70 ha agricultural field. Self-Organizing Maps (SOM), an 703 

advanced unsupervised machine learning technique, were combined with statistical validation 704 

methods to identify spatial areas with similar above- and below-ground properties. Historical yield 705 

maps and detailed soil information up to a depth of 100 cm were used to refine and validate the 706 

clustering results, ensuring both their accuracy and practical applicability.  707 

 708 

To address the variability introduced by environmental conditions during data collection, EMI 709 

measurements from multiple campaigns were standardized using z-score normalization, ensuring 710 

consistent input for further analysis of the investigated field. Similarly, NDVI data from the 2019 711 

growing season were selected as they represented an uninterrupted crop cycle prior to the 712 

subdivision of the investigated field in multiple patches. Before clustering, data was appropriately 713 

normalized. The Multi-Cluster Average Standard Deviation (MCASD) method was applied to 714 

determine the optimal number of clusters for different datasets. The optimal number of clusters 715 

was determined to be five using the EM data, four for the NDVI date, and four for the combination 716 

of EMI and NDVI datasets. However, statistical validation through Tukey’s post-hoc analysis 717 
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using independent yield maps and soil samples reduced the clusters number to 4, 3, and 3, 718 

respectively. This ensured that the clusters were not only computationally distinct with respect to 719 

the input data, but also significantly different in terms of soil characteristics and yield data, thereby 720 

increasing their practical relevance in precision agriculture. Finally, a two-tailed t-test was 721 

performed to compare the effectiveness of the management zones maps obtained with EMI, NDVI, 722 

and EMI-NDVI datasets. 723 

 724 

Results showed that EMI-based management zones provided a better representation of subsurface 725 

properties, particularly soil texture and the depth at which textural changes occur, which underlines 726 

the utility of EMI for guiding soil management practices. In comparison, NDVI-based 727 

management zones aligned more closely with topsoil characteristics and yield maps, effectively 728 

capturing above-ground variability. In general, the integration of EMI and NDVI datasets provided 729 

a more comprehensive representation of the spatial variability of both soil characteristics and yield, 730 

resulting in management zones that linked both subsurface soil conditions and above-ground 731 

vegetation performance. These combined zones effectively explained productivity patterns by 732 

bridging the gap between soil properties and crop health. 733 

 734 

The product of this study is a high-resolution management zonation map which would provide a 735 

significant added value in precision and sustainable agriculture. Moreover, it can help in setting-736 

up of agroecosystem models for the simulation of crop performance and yield and in guiding future 737 

soil sampling campaigns. Finally, the workflow proposed in this study can provide a robust 738 

blueprint for unsupervised clustering of proximal soils sensing and remote sensing data in 739 

agriculture, and future studies should explore the scalability of this methodology in different 740 
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climatic conditions or other crop systems, as well as investigate additional data sources to further 741 

enhance its representation of within-field heterogeneity in soil and crops.  742 
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Appendix A: Influence of data normalization  743 

Figure A1 shows a visual comparison of management zone delineation using different 744 

normalization approaches. These are: a) EMI-based clustering of ECaz maps, b) combined EMI-745 

NDVI clustering with dataset-wise normalization (i.e., normalized by using the minimum and 746 

maximum values for all the available data), and c) combined EMI-NDVI clustering with dataset-747 

wise normalization of EMI data and separate column-wise normalization of NDVI data. As 748 

apparent in Figure A1b, the EMI measurements dominate the clustering results when an 749 

inappropriate normalization is used. On the contrary, the normalization strategy used here (Figure 750 

A1c) provides a clustering result where both EMI and NDVI meaningfully contribute.  751 

 752 

Figure A1. Comparison of management zone delineation using different normalization approaches 753 

(a) EMI-based clustering without normalization, (b) Combined EMI and NDVI clustering with 754 

dataset-wise normalization, (c) Combined EMI and NDVI clustering with individual 755 

normalization, where EMI data were normalized as a dataset, while NDVI data were normalized 756 

column-wise. 757 

 758 

 759 
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Appendix B: Additional results for post-hoc analysis 760 

For the EMI dataset (VCP + HCP, 9 coils), the MCASD analysis suggested five clusters. The 761 

results of the post-hoc analysis are shown in Table B1. Statistically significant differences between 762 

two clusters are indicated by an O whereas an X indicates no significant differences. When two 763 

clusters have no statistically significant difference for any of the evaluated properties, they are 764 

merged. Therefore, clusters 4 and 5 were merged into a new cluster 4. For the NDVI dataset, the 765 

MCASD analysis suggested 4 clusters and the results of the post-hoc analysis (Table B2) merged 766 

clusters 3 and 4 into a new cluster 3. For the combined dataset (EMI + NDVI), the MCASD 767 

analysis suggested 4 clusters and the results of the post-hoc analysis (Table B3) merged clusters 1 768 

and 2 into a new cluster 1. 769 

 770 

Table B1. Post-hoc analysis of soil characteristics and yield for the EMI-based clusters leading to 771 

cluster merging. Statistically significant (O) or non-significant differences (X) are provided 772 

between clusters for soil texture, EOS layer, and yield. 773 

Clusters 1vs2 2vs3 3vs4 4vs5 

End of sandy layer (Depth cm) O X O X 

Layer 1 (above EOS) Sand X O O X 

Silt X O O X 

Clay X O O X 

Layer 2 (below EOS) Sand X X O X 

Silt X X O X 

Clay X X O X 

Yield  X X O X 

 774 
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Table B2. Post-hoc analysis of soil characteristics and yield for the NDVI-based clusters leading 775 

to cluster merging. Statistically significant (O) or non-significant differences (X) are provided 776 

between clusters for soil texture, EOS layer, and yield. 777 

Clusters 1vs2 2vs3 3vs4 

End of sandy layer (depth cm) X O X 

Layer 1 (above EOS) Sand O O X 

Silt O O X 

Clay O O X 

Layer 2 (below EOS) Sand X O X 

Silt X O X 

Clay X O X 

Yield  X O X 

 778 

Table B3. Post-hoc analysis of soil characteristics and yield for the clusters based on EMI and 779 

NDVI leading to cluster merging. Statistically significant (O) or non-significant differences (X) 780 

are provided between clusters for soil texture, EOS layer, and yield. 781 

Clusters 1vs2 2vs3 3vs4 

End of sandy layer (depth cm) X O O 

Layer 1 (above EOS) Sand X O O 

Silt X O O 

Clay X O O 

Layer 2 (below EOS) Sand X O X 

Silt X O X 

Clay X O X 

Yield  X O X 

 782 
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Appendix C: Differences in yield between derived management zones for two years 783 

Figure C1 presents boxplots illustrating yield variability (dt/ha) for Rye 2017 (Fig. C1a) and 784 

Rapeseed 2018 (Fig. C1b) across management zones derived from three clustering approaches: 785 

EMI-based (left), NDVI-based (middle), and combined EMI + NDVI (right). These two years were 786 

selected as representative examples, as the overall yield variation across the full nine-year dataset 787 

followed the same trend. In the EMI-based management zones, yield distribution is relatively 788 

similar across the first three zones, with a noticeable drop in the fourth zone. In contrast, NDVI-789 

based and EMI + NDVI zones show a progressive decline in yield across clusters, indicating a 790 

clearer trend of decreasing productivity.  791 

 792 

 793 

Figure C1. Yield distribution across final management zones based on EMI, NDVI, and 794 

combined EMI-NDVI datasets. 795 

 796 
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