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Abstract. Ocean bottom pressure (pb) variations from high-resolution climate model simulations under the CMIP6 (Coupled

Model Intercomparison Project Phase 6) HighResMIP protocol are potentially useful for oceanographic and space-geodetic

research, but the overall signal content and accuracy of these pb estimates have hitherto not been assessed. Here we compute

monthly pb fields from five CMIP6 HighResMIP models at 1/4◦ grid spacing over both historical and future time spans and5

compare these data, in terms of temporal variance, against observation-based pb estimates from a 1/4◦ downscaled GRACE

(Gravity Recovery and Climate Experiment) product and 23 bottom pressure recorders, mostly in the Pacific. The model results

are qualitatively and quantitatively similar to the GRACE-based pb variances, featuring—aside from eddy imprints—elevated

amplitudes on continental shelves and in major abyssal plains of the Southern Ocean. Modeled pb variance in these regions is

∼10–80% higher and thus overestimated compared to GRACE, whereas underestimation relative to GRACE and the bottom10

pressure recorders prevails in more quiescent deep-ocean regions. We also form variance ratios of detrended pb signals over

2030–2049 under a high-emission scenario relative to 1980–1999 for three selected models and find statistically significant

increases of future pb variance by∼30–50% across the Arctic and in eddy-rich regions of the South Atlantic. The strengthening

is consistent with projected changes in high-latitude surface winds and, in the case of the South Atlantic, intensified Agulhas

leakage. The study thus points to possibly new pathways for relating observed pb variability from (future) satellite gravimetry15

missions to anthropogenic climate change.

1 Introduction

Ocean bottom pressure (pb) measures the weight of the total water column exerted on the seafloor, and thus its variations are

inherently linked to mass fluxes and redistribution in the Earth system. For example, contemporary increases in ocean mass

and thus static pb result from loss of land ice and continued groundwater depletion (Ludwigsen et al., 2024). Dynamic pb20

signals, on the other hand, are largely driven by atmospheric forcing (e.g., Ponte, 1999; Boening et al., 2011; Petrick et al.,

2014; Fukumori et al., 2015), but may also arise internally within the ocean through non-linear processes (Zhao et al., 2021).

To the extent the ocean is in geostrophic balance, horizontal pb gradients can be used to infer barotropic transport variability of

deep currents (e.g., Makowski et al., 2015) or characteristics of the meridional overturning circulation (Hughes et al., 2018).

Physical oceanography aside, knowledge of pb variability is also essential in geodesy, particularly for de-aliasing purposes in25
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satellite gravimetry processing (Shihora et al., 2022; Schindelegger et al., 2021). In addition, ocean mass redistributions excite

Earth rotation changes (e.g., Harker et al., 2021) and cause crustal loading signals that may mask geophysically more relevant

effects in station position time series (van Dam et al., 2012).

Works in the noted disciplines have been served well by pb estimates on a global scale from time-resolved satellite gravimetry

(i.e., the Gravity Recovery and Climate Experiment, GRACE) and numerical ocean models. Pertinent model diagnostics are30

typically drawn from data-constrained or free simulations of the real ocean (e.g., Piecuch et al., 2015; Hughes et al., 2018;

Androsov et al., 2020; Shihora et al., 2022; Ponte et al., 2024). With a few exceptions (Ponte et al., 2002; Bingham and

Haines, 2005; Landerer et al., 2007), coupled climate models have so far played no role in studies of pb variability and its

implications, mainly because they are arbitrary in time. However, such synthetic mass change records are potentially useful

as background fields in future gravimetry mission simulations to assess the error characteristics and science return of specific35

satellite constellations (Daras et al., 2024). Moreover, climate models can be used to delineate likely changes in surface mass

variability that may form target signals for future satellite gravity missions (cf. Jensen et al., 2020). Whether or not there are

any significant changes in dynamic pb to expect in a warming world is an interesting question in its own right.

We are thus motivated to take a first look at pb estimates from the latest realization of the Coupled Model Intercomparison

Project (CMIP), i.e., CMIP6. Specifically, our objectives are to (i) validate the pb diagnostics from CMIP6 experiments by40

comparing them in, a statistical sense, to observations, (ii) identify source models that could possibly serve as input for end-

to-end satellite simulations, and (iii) test for likely future changes in pb variability under a high-emission scenario. Although

the coarse-resolution (∼100-km grid spacing) branch of CMIP6 would suffice most of these purposes, we here analyze the

output of eddy-permitting (∼25-km) ocean models under the CMIP6 HighResMIP (CMIP6-HR) protocol. Horizontal model

resolution in this range is generally advantageous for representing topographically constrained dynamics (e.g., Harker et al.,45

2021). It also admits transient eddy features, which have their own unique imprint on pb (Bingham and Hughes, 2008; Hughes

et al., 2018; Zhao et al., 2021). Eddy activity, in turn, is projected to change profoundly in the 21st century (Beech et al., 2022)

and therefore may strengthen or weaken pb variability in certain locations. In total, and for practical reasons, we consider five

out of the seven complete institutional contributions to the CMIP6-HR activity (cf. Haarsma et al., 2016; Roberts et al., 2020).

The specific time periods examined by us are 1980–2014, representing recent historical climatic conditions, and 2030–294950

in the near future. Given the monthly sampling of the data and the fact that model drift (Sen Gupta et al., 2013) precludes the

study of trends, we exclusively analyze pb signals at intraseasonal to interannual periods.

2 Data and methods

2.1 Climate model data

CMIP6-HR is an effort dedicated to the investigation of the role of horizontal resolution in CMIP-type climate simulations55

(Haarsma et al., 2016), see, e.g., Docquier et al. (2019), Roberts et al. (2020) or Shi et al. (2021) for valorizations of these

simulations with respect to the ocean. We use the model outputs from the coupled historical runs (labeled as ‘hist-1950’ in

HighResMIP), complemented by coupled scenario simulations (‘highres-future’) in several cases. The hist-1950 simulations
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Table 1. Selected specifications of the CMIP6-HR models used in this studya

ECMWF-IFS HadGEM3-

GC31

CNRM-CM6-1 CMCC-CM2 EC-Earth3P

Short name ECMWF HadGEM CNRM CMCC Earth3P

Resolution label HR HM HR VHR4 HR

Atmospheric modelb IFS cycle 43r1 UM GA7.0 ARPEGE-Climat6.3 CAM4 IFS cycle 36r4

Atmosphere resolution in km 25 50 35 25 50

Ocean/sea ice

Ocean model NEMO3.4 NEMO3.6 NEMO3.6 NEMO3.6 NEMO3.6

Horizontal resolution in ◦ (km) 1/4◦ (25 km) 1/4◦ (25 km) 1/4◦ (25 km) 1/4◦ (25 km) 1/4◦ (25 km)

No. vertical levels 75 75 75 50 75

Variant label r1i1p1f1 r1i1p1f1 r1i1p1f2 r1i1p1f1 r3i1p2f1

Reference Roberts et al.

(2018)

Roberts et al.

(2019)

Voldoire et al.

(2019)

Cherchi et al.

(2019)

Haarsma et al.

(2020)

aThe analysis window is 1980–2014 (hist-1950 experiment) and, in addition, 2030–2049 for the HadGEM, CNRM, and Earth3P highres-future experi-

ments under SSP5-8.5.

bAbbreviations: IFS (Integrated Forecasting System of the ECMWF), UM GA7.0 (Global Atmosphere 7.0 configuration of the Met Office Unified

Model), ARPEGE (Action de Recherche Petite Echelle Grande Echelle), CAM4 (Community Atmosphere Model Version 4).

cover the period 1950–2014 and provide the initial conditions to highres-future, nominally integrated to the year 2050. Exter-

nal forcing fields comprise time-varying solar, volcanic, anthropogenic aerosol, ozone depletion, and greenhouse gas effects60

(Haarsma et al., 2016). For the highres-future simulations, these forcings follow the Representative Concentration Pathway 8.5

(i.e., high-end emission) scenario with Shared Socioeconomic Pathway 5 (SSP5, O’Neill et al., 2016) conditions, abbreviated

as SSP5-8.5.

The five CMIP6-HR models examined in our work are ECMWF-IFS-HR (European Centre for Medium-Range Weather

Forecasts Integrated Forecasts System), HadGEM3-GC3.1 (Hadley Centre Global Environment Model 3 – Global Coupled65

vn 3.1), CNRM-CM6-1 (Centre National de Recherches Météorologiques Climate Model version 6), CMCC-CM2 (Euro-

Mediterranean Centre on Climate Change Coupled Climate Model version 2), and EC-Earth3P; see Table 1 for an overview.

Ad hoc short names, used throughout the paper, are ECMWF, HadGEM, CNRM, CMCC, and Earth3P, respectively. Given

the scope of our study, we focus on the high-resolution (label HR, HM, or VHR4) configuration of each model, comprising a

horizontal grid spacing of 1/4◦ (∼25 km) for the ocean and 25 to 50 km for the atmosphere. The selected models differ with70

regard to the atmospheric component but not for the ocean (Table 1); the ocean component in all five cases is NEMO (Nucleus

for European Modelling of the Ocean, either version 3.4 or 3.6, Madec, 2016), a hydrostatic, primitive equation general circu-

lation model. Processes and properties of the ocean are therefore represented very similarly in all five climate models. Hence,
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any spread in pb variability reported below rather bears on parameter uncertainty, internal variability, or structural uncertainty

in the atmospheric component. Values for selected parameters of the ocean component (e.g., viscosity and diffusivity) can be75

found in Docquier et al. (2019) and Roberts et al. (2020).

To deduce each model’s bottom pressure, we retrieve monthly mean fields for potential temperature (standard name ‘thetao’),

salinity (‘so’), and sea surface height above geoid (‘zos’). For the hist-1950 experiments, we focus on the last 35 simulation

years (1980–2014), giving us a temporal overlap with the gridded validation data from satellite gravimetry (Sect. 2.3) of nearly

13 years. Comparisons of signal variance, as attempted in this study, could also be done for non-overlapping time periods if80

one assumes stationarity of the pb variability at a given location. We will return to this assumption in the summary section. The

time span considered for the highres-future simulations is 2030–2049. These choices were made in view of data availability

and manageable data volumes.

2.2 Calculation of ocean bottom pressure anomalies

A mathematical expression for pb, obtained by integrating the hydrostatic balance over full depth along the vertical coordinate85

z (positive upward), is (e.g., Gill and Niller, 1973; Ponte, 1999)

pb =

0∫

−H

ρgdz +

η∫

0

ρ0gdz =

0∫

−H

ρgdz + ρ0gη (1)

where ρ = ρ(z) is the (in situ) density of seawater with surface value ρ0, η represents the sea level anomaly, H is the local

water depth, and g is the acceleration due to gravity. While atmospheric pressure contributes to pb in nature, it is not part of

the exchange variables between atmospheric and oceanic components of CMIP6-HR and therefore neglected in Eq. (1). We

perform the vertical integration on the native model grid and specifically derive the value of ρ at a given location from the90

modeled potential temperature and salinity, using the Gibbs SeaWater Oceanographic Toolbox (McDougall and Barker, 2011).

Exact evaluation of Eq. (1) from CMIP6-HR data would also require each model’s internal representation of bottom topography,

e.g., in the form of a three-dimensional array of wet and dry cell fractions (or partial cell thicknesses; see Adcroft et al., 1997;

Bernard et al., 2006). Given that these fractions are not provided in the CMIP6 archive, we calculate approximate versions

of them based on given layer thicknesses and the ETOPO1 bathymetry dataset (Amante and Eakins, 2009), interpolated to95

the horizontal model grid. Although the information on the provenance of model bathymetries in CMIP6-HR is sketchy, the

HadGEM ocean component description (Storkey et al., 2018) explicitly points to ETOPO1, and that is indeed a standard choice

for NEMO simulations on the ORCA025 grid (cf. Börger et al., 2023).

We reduce the full bottom pressure to dynamic anomalies (also denoted pb) by subtracting the time-mean pressure and

trend values at each grid point, along with the monthly-varying spatial average of pb. Global ocean mass changes, which may100

have physical and non-physical causes in numerical ocean models (e.g., Sen Gupta et al., 2013), are therefore not part of the

analyzed pb variability. To convey some sense of how this variability is distributed across frequencies while also keeping the

description of the results compact, we consider (i) full-time series of detrended dynamic pb and (ii) non-seasonal anomalies

obtained by removing least-squares fits of the annual and semiannual oscillations from the full-time series. Variant (ii) thus
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emphasizes intraseasonal and interannual pb signals. The seasonal cycle, which has been the subject of several recent GRACE105

and ocean model studies (e.g., Cheng et al., 2021; Chen et al., 2023; Ponte et al., 2024), is only treated in passing. Note that pb

has standard SI units (Pa) in our calculations but is expressed as centimeters of equivalent water height (EWH) below, assuming

the same references density (1025 kg m−3) as in the GRACE data.

2.3 Downscaled GRACE product

The primary dataset for validating the CMIP6-HR bottom pressures is a high-resolution satellite-based pb product (Gou et al.,110

2025), obtained by downscaling available monthly pb anomalies from GRACE/-Follow On (Tapley et al., 2019) beyond their

typical effective resolution of∼3◦. This product, called GRACE-DS hereinafter, offers gridded pb information from April 2002

to December 2020 on a 1/4◦ × 1/4◦ grid, commensurate with the resolution of the CMIP6-HR models. The downscaling was

realized using a self-supervised deep-learning algorithm, guided by pb diagnostics from two eddy-permitting ocean reanalyses

(Lellouche et al., 2013; Zuo et al., 2017). In particular, spatial detail on sub-GRACE grid scales was obtained by maximizing115

similarities between the downscaled product and the reanalysis output, while constraining the solution to the original GRACE

values at larger scales (Gou et al., 2025). The data fusion algorithm was further enhanced by supervision signals based on input

features, comprising, e.g., wind stress and bathymetry. From the three downscaled solutions provided by Gou et al. (2024), we

use the one based on GRACE mascons from the Center for Space Research (Save et al., 2016).

The temporal RMS (root-mean-square) of the monthly GRACE-DS fields at each grid point is depicted in Fig. 1 and dis-120

cussed in relation to the CMIP6-HR pb signal content in Sect. 3.2. As with the models, the GRACE-DS time series represents

dynamic, detrended pb anomalies. Sources of inconsistency between the two datasets are, among other effects, the absence

of barometric pressure-driven pb variability in the models (cf. Piecuch et al., 2022, ≲ 0.5 cm in places) and seismic gravi-

ty/deformation signals associated with major earthquakes in GRACE-DS (e.g., Zhang et al., 2020). The largest such spurious

contribution to pb, apparent in Fig. 1 around the Malay Peninsula, stems from the 2004 Sumatra-Andaman and 2012 Indian125

Ocean earthquakes. We approximately delimit the affected region based on insight from literature (De Linage et al., 2009) and

enhanced (≥ 2 cm) open-ocean pb values, and exclude it from all direct comparisons to the model fields below.

2.4 In situ observations

We also compare the CMIP6-HR pb diagnostics with direct seafloor pressure measurements from the DART® (Deep-ocean

Assessment and Reporting of Tsunamis) program (Bernard and Meinig, 2011). DART is a US-led tsunami early warning130

system comprising more than 50 active deep-ocean bottom pressure recorders (BPRs) located mainly along the Circum-Pacific

belt. The DART data are disseminated in meters of EWH with a nominal sampling of 15 min. From the full network, we extract

23 stations with nearly continuous observations over an 11-year time span from 2013 to 2023. The year 2013 is a reasonable

start date, as it marks the completion of a major upgrade to the DART technology (Bernard and Meinig, 2011). Each of the 23

time series is a concatenation of recordings from successive deployments in slightly different locations, typically differing by135

O(10 m) in the overlying pressure. We process each of these segments individually, removing (i) 3 days of observations at the

start and end of the time series, (ii) a fitted second-order polynomial (to account for sensor drift, cf. Poropat et al., 2018), (iii)

5
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Figure 1. RMS of monthly pb anomalies (in cm of EWH) from GRACE-DS, obtained by downscaling 1◦ GRACE mascons (Save et al.,

2016) to a 1/4◦× 1/4◦ grid. Time series are from April 2002 to December 2020, with trends and spatial mean pb signals removed. White

triangles indicate the 23 BPR stations used in this study, labeled by increasing longitude. The dashed black polygon in the Andaman Sea

marks the region excluded from the comparison in Sect. 3 due to the presence of seismic deformation signals in the GRACE fields. Lettered

keys denote the (A) Gulf of Thailand, (B) Australian Antarctic Basin, (C) Gulf of Carpentaria, (D) Kuroshio Current, (E) Ross Sea, (F)

Bellingshausen Basin, (G) Drake Passage, (H) Gulf Stream Extension, (I) Argentine Basin/Zapiola Gyre, (J) Weddell Basin, (K) Enderby

Basin, (L) Cape Basin/Agulhas leakage, (M) Agulhas Return Current.

occasional spikes, and (iv) signals of 16 largest tidal constituents (Hart-Davis et al., 2021, including fortnightly, monthly, and

semiannual constituents). Steps (i)–(iv) are applied to hourly-sampled versions of the segments, which we subsequently splice

together and average into a monthly pb series per station.140

For consistency with our treatment of the CMIP6-HR fields (Sect. 2.1), the DART data should also be cleaned from global

mean pb signals, reflecting both atmospheric pressure variations over the ocean and true ocean mass changes (Ponte, 1993;

Johnson and Chambers, 2013). While the former is readily corrected for using monthly sea level pressures from a modern

atmospheric reanalysis (Hersbach et al., 2020), precise estimates for the mean ocean mass change over 2013–2023 are harder

to come by. However, apart from a trend, these changes mainly consist of an annual oscillation, reaching∼0.5 cm in amplitude145

(Johnson and Chambers, 2013). We thus remove from the detrended DART data a synthetic time series of the seasonal cycle

in ocean mass, constructed from pb output (1992–2017) of an ocean state estimate (the Estimating the Circulation and Climate

of the Ocean, Version 4 Release 4b, ECCOv4rb, Forget et al., 2015). ECCOv4rb is deemed suitable for this purpose, as it is

constrained to most available oceanographic data, including GRACE-based pb and observed global ocean mass changes.

Our final network, illustrated in Fig. 1, comprises 23 BPRs featuring a mean cumulative record length of 10.8 years, with150

monthly averages typically built from 260 to 350 days of valid observations per year. The in situ time is, therefore, much

6
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shorter than the CMIP6-HR records but sufficiently long to constrain variability at the annual and higher frequencies (cf. Ray

et al., 2021, for the case of sea level). Interannual pb variability, which is less well represented by these ∼10-year records,

accounts for about 30% of the variance in the full monthly DART time series. The network also heavily emphasizes the Pacific,

with only two stations in the western North Atlantic and one sensor located in the Indian Ocean (North Australian Basin). We155

nevertheless prefer to perform our analysis based on a homogeneous, consistently processed in situ dataset and refrain from

adding other BPR time series, which are usually short in duration (≲ 1–4 years, Poropat et al., 2018; Androsov et al., 2020;

Schindelegger et al., 2021) or confined to special locations (e.g., the Arctic Beaufort Gyre, Kemp et al., 2005).

3 Results

3.1 Overview of modeled pb variability160

Figure 2 (left column) illustrates the RMS of monthly dynamic pb anomalies, calculated for each of the five CMIP6-HR

models over the period 1980–2014. The model results are qualitatively and quantitatively very similar to the pb variability in

the GRACE-DS product (Fig. 1), ocean state reconstructions (Piecuch et al., 2015; Gou et al., 2025), and ocean forward models

forced by atmospheric analysis fields (e.g., Hughes et al., 2018; Poropat et al., 2018; Androsov et al., 2020). Among the defining

features are a general increase in pb variability from temperate to polar latitudes, elevated amplitudes in several marginal seas165

(e.g., Hudson Bay, Mediterranean Sea, Red Sea), and largest signals near continental boundaries. Shallow depths facilitate a

vigorous barotropic response to the imposed wind stress (Vinogradova et al., 2007), leading to peak values of 10–15 cm in

Fig. 2 over, e.g., the Siberian Shelf, Chukchi Sea, Gulf of Thailand, Gulf of Carpentaria, and Baltic Sea. In some of these

places, coastally trapped waves contribute to the spreading of locally generated mass anomalies (e.g., Oliver and Thompson,

2011; Fukumori et al., 2015).170

In the deep ocean, known regions of relatively high barotropic variability are the Arctic Ocean, the subpolar Northwest

Pacific (Petrick et al., 2014), and the three major abyssal plains in the Southern Ocean (Bellingshausen, Australian-Antarctic,

and Weddell-Enderby basins). These plains are encased by nearly closed contours of potential vorticity, thus trapping and

amplifying forced barotropic circulations (e.g., Fukumori et al., 1998; Weijer and Gille, 2005; Ponte and Piecuch, 2014; Weijer,

2015). The Australian-Antarctic basin is the most energetic of the three regions, with RMS values of∼4–6 cm in all five models.175

Bottom topography also plays a key role in generating the characteristic, near-uniform fluctuation in pb (up to 4 cm, Fig. 2) in

the interconnected deep basins of the Arctic Ocean and Nordic Seas. In detail, wind stress along the continental slope results

in cross-slope Ekman transport, which creates pb anomalies of opposite sign between the shallow shelf and the adjacent deep

ocean (Fukumori et al., 2015). The deep-ocean mass anomaly propagates away from its source regions as trapped Kelvin wave,

separates from its shallow counterpart at straits and sills, and eventually equilibrates across the deep Arctic basins that are180

bounded by gradients of potential vorticity.

Forced barotropic dynamics aside, the CMIP6-HR models also contain an active mesoscale field, which can modulate the pb

diagnostics on local to basin-wide scales at intraseasonal and longer periods (Hughes et al., 2018; Zhao et al., 2021, 2023). Lo-

calized imprints of eddies and baroclinic instabilities are most obvious in western boundary current regions (Agulhas Retrore-
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Figure 2. RMS (cm) of detrended pb time series, 1980–2014, from five CMIP-HR models (left column) and each model’s variance ratio, R,

relative to the pb variance from GRACE-DS (right column). Values of R > 1 indicates an overestimation of bottom pressure variability in the

model, while R < 1 suggests underestimation. The black solid line marks the 1000-m isobath, and the region of the Andaman Sea anomaly

seen in GRACE-DS is masked out; cf. Fig. 1.
8
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flection, Kuroshio, Gulf Stream) and broadly along the path of the Antarctic Circumpolar Current (Androsov et al., 2020).185

A stand-out feature in all models, perhaps with the exception of CMCC (Fig. 2d), is a ∼8-cm G-shaped pb structure in the

Argentine Basin. The pattern is the signature of the Zapiola Anticyclone, a well-known recirculation supported by high eddy

activity in the western parts of the basin and interactions of that eddy field with bottom topography (de Miranda et al., 1999;

Hughes et al., 2007). The GRACE-DS product suggests a similarly G-shaped structure around the Zapiola Drift (Fig. 1), albeit

largely inherited from the utilized ocean reanalyses rather than the GRACE gravity fields themselves (Gou et al., 2025).190

3.2 Comparison with GRACE-DS – broadband variability

For a more quantitative analysis of the agreement between modeled and observation-based pb fluctuations, we compute variance

ratios, R, defined as

R =
σ2

mod

σ2
obs

(2)

where σ2
mod represents the pb variance of a chosen model and σ2

obs is the observed variance at a given location, calculated

from GRACE-DS, or from BPRs below. Figure 2 (right column) illustrates global estimates of R for the full (i.e., unfiltered)195

pb model time series relative to GRACE-DS, deduced after interpolating σ2
mod from the native model grid to the GRACE-DS

grid. Despite differences in detail, the five maps have several features in common. In particular, they suggest a tendency for

excess model variance (R > 1) in areas of enhanced pb amplitudes (Fig. 2, left column), while underestimation by the models

(R < 1) prevails in less energetic regions. One may argue that the latter is simply due to noise in the chosen GRACE product,

dominating the low and mid-latitude RMS in Fig. 1. However, random errors in a single monthly gravity field solution are200

typically estimated to be 3–4 cm (e.g., Kvas et al., 2019), which limits the noise component on the temporal RMS in Fig. 1 to

0.3 cm (inferred from a pessimistic variance propagation over 192 monthly pb fields).

Less easy to rebut is the existence of systematic effects in the GRACE-DS product, comprising, e.g., imperfect corrections

for low-degree zonal spherical harmonics and geocenter motion. In addition, GRACE-derived pb estimates contain the effects

of gravitational attraction and loading (GAL). The physics of GAL are not encoded in CMIP6-HR but can induce ocean mass205

changes in the order of 0.5 cm, particularly at the annual frequency and near continental boundaries (Ponte et al., 2024). Parts

of the higher variance in GRACE-DS in the Northern Indian Ocean and off the Amazon Shelf, which adjoin regions of large

terrestrial water storage variations, are therefore likely due to GAL. We also note that the underestimation of variance in the

deep-water tropics and some eastern boundary regions in CMIP6-HR (Fig. 2f–j) coincides with areas where pb variability is

influenced by baroclinic dynamics and coupling between baroclinic and barotropic modes; cf. Hughes et al. (2018) but see also210

Piecuch et al. (2015) and Zhao et al. (2021). Proper depiction of these processes in the models may pose a challenge, especially

in non-eddy-resolving configurations. Overall, we conclude that the dominance of R < 1 in quiescent ocean regions in Fig. 2

is due to a mixture of data noise, remaining systematic effects in the GRACE-DS fields, and mismodeled or entirely absent

pb signals in the simulations. Out of the five cases considered, HadGEM and Earth3P appear to be least affected by modeling

issues; global median variance ratios, R, deduced from all grid points with a model RMS of ≤ 3 cm and in depths greater than215
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Table 2. Global median variance ratios, R, of the CMIP6-HR models relative to GRACE-DS and BPRsa

Model Name GRACE-DS, deep GRACE-DS, shelf BPRsb

RMS > 3 cm RMS ≤ 3 cm |ϕ| > 60◦ |ϕ| ≤ 60◦

ECMWF 1.54 (1.40) 0.72 (0.66) 1.39 (1.50) 1.11 (1.36) 1.05 (0.63)

HadGEM 1.52 (1.49) 0.82 (0.74) 1.86 (1.71) 1.30 (1.64) 1.04 (0.69)

CNRM 1.16 (1.11) 0.73 (0.62) 1.50 (1.53) 0.94 (1.20) 0.84 (0.60)

CMCC 1.78 (1.57) 0.74 (0.59) 1.38 (1.36) 1.19 (1.32) 0.76 (0.53)

Earth3P 1.32 (1.24) 0.91 (0.74) 1.49 (1.53) 1.25 (1.59) 1.26 (0.72)

a For each model, we list the global median value of R, relative to GRACE-DS, in four regions, two regions each in deep water

(depths > 1000 m) and shallow water (depths < 1000 m). The partitioning in the deep ocean is by model RMS (> 3 cm or

≤ 3 cm), while shelf regions are separated by latitude ϕ (higher or lower than 60◦). Values in brackets are the same estimates

for the non-seasonal signal content. The last column shows the median variance ratios relative to BPRs.

b When compared to BPRs, GRACE-DS has a median variance ratio of 1.30 for the full time-series, and 0.92 for non-seasonal

pb changes.

1000 m, are 0.82 (HadGEM) and 0.91 (Earth3P). These numbers are considerably closer to 1 than for the other three models

(R≈ 0.73, Table 2).

Shifting the focus to the red (i.e., R > 1 ) patches in Fig. 2, we find that all models overestimate the pb variance relative

to GRACE-DS in the Northwest Pacific, the Australian-Antarctic Basin, and (to some extent) the Weddell-Enderby abyssal

plain. Excess values are least pronounced in CNRM and largest in CMCC, evident also from the global median variance ratios220

taken over deep energetic regions (R = 1.16 vs. R = 1.78, see Table 2). Given the importance of wind stress curl and bottom

topography in shaping the pb variability in these deep basins (cf. Sect. 3.1), misrepresentation of either of these factors could

reduce the fidelity of the modeled barotropic dynamics. For example, both the horizontal and vertical model resolution may

be too coarse to produce the necessary topographic steering and dissipation by form stress (Weijer and Gille, 2005). Other

suspects are imperfect wind stress parametrizations or overly strong surface winds as simulated by each model’s atmosphere.225

However, supplementary checks of the 10-m wind speeds from several of the tested models revealed only small deviations

from atmospheric reanalysis fields.

A propensity for excess pb variance in the CMIP6-HR models is also seen for most continental shelf regions—in sub-

polar and polar latitudes more so than in the tropics (cf., e.g., the Gulf of Thailand and Indonesian Seas). This geographical

dependence is further brought out in Table 2, where we compute global median variance ratios in shallow water (H < 1000 m)230

both for latitudes higher and lower than 60◦ (a somewhat arbitrarily chosen cut-off). The overestimation of shallow pb variations

within 60◦ from the equator is rather subtle, bounded by R = 1.30 for HadGEM. The HadGEM value increases to R = 1.86

in polar latitudes, followed by R = 1.38–1.50 in the other models. Common regions of systematic overestimation are the East

Siberian Shelf, the Bering Sea, and the Antarctic continental shelf. While the red patches in the Arctic may again point to issues

regarding wind stress forcing and dissipation mechanisms, the overestimated pb variability in the Weddell and Ross Seas bears235
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Figure 3. As in Fig. 2 but restricted to three models (HadGEM, CNRM, Earth3P) and non-seasonal signals.

on the blocking of Antarctic ice shelf cavities in CMIP6-HR. This modeling choice constricts the solution to a narrower body

of water than in the real ocean and necessarily distorts the dynamics of the region.

As for the pb imprints of mesoscale eddies, areas of over- and underestimation mostly vary from model to model, see, e.g.,

the Drake Passage or the Agulhas Retroreflection and its leakage to the west. However, at these small scales, the signal content

in the GRACE-DS product is the result of trading off reanalyses output with GRACE fields that have an effective resolution of240

∼300 km (Gou et al., 2025). This type of blend certainly limits the validity of the comparison in Fig. 2 at the mesoscale. We

nevertheless find a common patch of low variances ratios (R≈ 0.5) in the Northwest Atlantic south of Grand Banks, where

the pb signature of eddies in the GRACE-DS product spread considerably further into the Atlantic interior (Fig. 1) than in the

CMIP6-HR models. The situation bears close resemblance to Figure 8 in Bernard et al. (2006), which suggests that NEMO

simulations on the ORCA025 grid typically underestimate the magnitude and spatial spread of eddy kinetic energy in the Gulf245

Stream Extension.
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3.3 Non-seasonal pb variability

Modeled pb variability with annual and semiannual oscillations subtracted is briefly assessed for three of the five available

models. We select CNRM and Earth3P, which compare favorably to GRACE for energetic deep-ocean regions in Fig. 2, and

HadGEM—essentially to have somewhat of a counterpoint to the other two models. Global median variance ratios at non-250

seasonal periods for all five models are compiled in Table 2. As evident from Fig. 3, removal of the seasonal cycle reduces

RMS values in deep waters of temperate latitudes to ∼1 cm. At these magnitudes, comparisons with GRACE-DS are likely

limited by data noise and subtle systematic errors (cf. Sect. 3.2), inhibiting more solid inferences as to why variance ratios in

quiet deep-ocean regions decrease relative to the full time series (Table 2, Fig. 2f–j vs. Fig. 3d–f). Non-seasonal signal levels

in many of the more energetic areas in Fig. 3 remain comparable to the full variability (Fig. 2), and so do the variance ratios255

over GRACE-DS. Obvious examples are the Arctic Ocean and Nordic Seas, the Bellingshausen Basin, and several eddy-active

regions (e.g., Zapiola Drift, Agulhas leakage, Gulf Stream Extension).

Wherever pb has an appreciable seasonal cycle (cf. Ponte et al., 2024), RMS values in Fig. 3 are lower than in Fig. 2. Aside

from numerous shelf areas, such as the Gulf of Thailand, non-seasonal amplitudes are also weaker than seasonal amplitudes in

the Northwest Pacific, the Australian-Antarctic Basin, and the Weddell-Enderby Abyssal Plain. These changes go along with260

an improvement of the variance ratios relative to GRACE-DS toward R≈ 1 (even for HadGEM), suggesting that wind-driven

geostrophic modes in abyssal-plain regions are indeed too energetic at seasonal periods in CMIP6-HR. Another noteworthy

change as we switch from full to non-seasonal variability is the increase in global median variance ratios over mid- and low-

latitudinal continental shelves by about 0.2 for each of the five models (Table 2). The increase is mainly caused by an excess of

pb variability relative to GRACE-DS in the shallow waters along the China and North American east coasts, as well as around265

New Zealand. For eastern continental boundaries, this overestimation potentially points to modeling problems regarding the

propagation and decay of coastally trapped waves (Hughes et al., 2019).

3.4 Comparison with in situ observations

Comparisons against BPRs in terms of signal levels (RMS), variance ratios, and median variance ratios over all 23 sites are

illustrated in Fig. 4 and Table 2. The analysis complements the previous validation against GRACE-DS in relatively quiet (RMS270

≤ 3 cm) deep-ocean regions, emphasizing in particular the Pacific; cf. the BPR locations in Fig. 1. For additional context, we

also include (but do no extensively discuss) point-wise statistics from GRACE-DS in Fig. 4. A first general observation is

that the BPRs have signal levels very similar to those present in the model-based and GRACE-DS pb estimates at the tested

locations. Exceptions from this behavior are rather nuanced and also depend on whether unfiltered or non-seasonal signals

(Fig. 4a–b) are analyzed. Specifically, we can discern a tendency for higher in situ than model pb variance for several sites near275

the equator (IDs 1–5 and 19), i.e., latitudes where baroclinic and partly non-linear dynamics govern bottom pressure changes

(Piecuch, 2015; Hughes et al., 2018). The phenomenon appears to be common to both the full and filtered time series at most

of the noted stations.
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Figure 4. Comparison of the CMIP6-HR and GRACE-DS pb variability against BPR observations at 23 locations (see Fig. 1) in terms of

RMS (left panels) and variance ratios (right panels, R = 1 indicated by horizontal gray line). The top row shows the statistics for the full

broadband pb variations, while the bottom row is for non-seasonal signals.

Somewhat more puzzling, at least at first glance, is that for all sites in the North and Northeast Pacific (IDs 7–16, and partly

elsewhere), the model variance ratios hover around 1–1.5 with the seasonal cycle included (Fig. 4c) but drop well below R = 1280

once it is eliminated (Fig. 4d). This contrast points to systematic differences between BPRs and models in their representation

of seasonal pb signals. At the points analyzed here, seasonal oscillations evidently make up a larger fraction of the overall pb

variance in the models than they do in the DART data. We suspect that at a resolution of 1/4◦, the model bathymetry is too

coarse (or too smooth) to capture the damping effects of small-scale topography on the pb response to seasonal wind stress

forcing; cf. Chen et al. (2023) for an in-depth study of the problem in the North Pacific Ocean. Accordingly, the apparent285

agreement between CMIP6-HR and the BPRs in the broadband case (Fig. 4a) may be partly coincidental; that is, anomalous

seasonal variability in the models matches the variance due to non-seasonal local pb fluctuations in the in situ series. On the

subject of topography, a final interesting case is station 22 (DART ID 44402, Southeast Block Canyon), which sits at the lower
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New England continental slope at a depth of about 2600 m. This setting likely suppresses mesoscale signals in bottom pressure

from the nearby Gulf Stream (Hughes et al., 2018), hence the diminished RMS in Fig. 4a. However, there is little hope that290

such effects are represented accurately with ocean models run at ∼25-km grid spacings.

Adopting a more quantitative view, median variance ratios R over all BPRs range from 0.76 (CMCC) to 1.25 (Earth3P) and

decrease to R = 0.53–0.73 after removal of the seasonal cycle (Table 2). The comparison of CMIP6-HR with GRACE-DS on

a global scale suggests, in fact, very similar ranges and model rankings. This is a reassuring result that alleviates some of our

concerns as to the quality of the satellite-based pb solutions at low signal levels (Sect. 3.3). Consistency in detail is particularly295

seen along the North and East Pacific margins (IDs 9–20), where both GRACE-DS and the BPRs attribute lowest variance

ratios to either CNRM and CMCC and highest variance ratios to Earth3P (Figs. 2–4). Thus, the DART series offer a useful

point of comparison, despite their limited spatial coverage and the possible presence of short-scale signals in the records. Joint

consideration of the lumped statistics in Table 2 and the GRACE-DS variance ratio maps (Figs. 2–3) nevertheless suggest that

Earth3P outperforms the other models in most dynamical regimes. CNRM is least affected by the common issue of excess300

pb variance in deep energetic regions, whereas HadGEM comes close to Earth3P in quiescent areas. We proceed with these

three models for the remainder of the analysis and note that while other choices would have been possible, the overall pb

characteristics in all five models are still very similar.

3.5 Projected changes in pb variability

We now examine whether the CMIP6-HR models suggest any notable changes in pb variability under anthropogenic climate305

change (Fig. 5). To that end, we compute variance ratios, R, of the detrended pb series from the three previously selected models

over the time span 2030–2049 (highres-future) with respect to 1980–1999 (hist-1950 simulations). The mid-points of the two

windows are therefore 50 years apart, representing the maximum separation possible with the data at hand. We additionally

consider 2030–2049 vs. 1980–1999 variance ratios from the control run (Fig. 5, left column), which was integrated for 150

years with fixed forcing (Haarsma et al., 2016). These estimates give an approximate idea of the magnitude of regional pb310

changes that emerge internally within the simulations in the absence of time-evolving climate conditions. Evidently, the control

run variance ratios from the three models have very little in common and are mostly restricted to the range R = 0.7–1.3, with

only a few broader statistically significant changes (e.g., in the Bellingshausen Basin for HadGEM). These findings provide

useful context for to the discussion of climate-driven changes in the simulated pb variance (see below). A region that needs to

be interpreted with caution, though, is the deep Arctic Ocean, which sees strengthened pb variability in the control run of all315

three models. However, that increase is statistically significant only in CNRM.

The maps of R formed using the CMIP6-HR historical and scenario runs (Fig. 5, right column) paint a relatively complex

picture of future changes in pb variance. Amplitude decreases typically alternate with increases on sub-basin scales, involving

changes in regions with distinct dynamical regimes. Although the three maps show many differences in detail, we can still

discern a few common, statistically significant features that point to a robust response of dynamic pb to climate change. One320

such region appears to be the connected deep basin of the Arctic Ocean and Nordic Seas, with widespread variance increases

of 40–60%, partly also extending to adjacent continental shelves. The increase in CNRM, though, is smaller than in the control
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Figure 5. Dimensionless variance ratios of unfiltered pb time series over the 2030–2049 time period relative 1980–1999 for HadGEM

(top row), CNRM (middle row), and Earth3P (bottom row). Left panels (a–c) present the variance ratios for pb from each model’s control

simulation, whereas the right panels (d–f) show the ratios formed from the combined scenario and historical simulations. Stipples indicate

3◦ × 3◦ cells where the variance ratio is significantly different from zero at 90% confidence for at least a third of the contained 1/4◦ grid

points (confidence levels were determined from the proper F -test considering the effective degrees of freedom at each grid point). Black

contours encase areas where the model RMS in Fig. 2, smoothed to 200 km length scales, exceeds 3 cm.

run (Figs. 5b and 5e) and therefore questions the results from HadGEM and Earth3P. To examine the matter further—and given

the tight connection of pb fluctuations in the Arctic region to wind forcing (Fukumori et al., 2015)—we plot projected changes

in the zonally averaged 10-m wind speed from the three CMIP6-HR simulations (Fig. 6, 2030–2049 relative to 1980–1999 as325

before). All three models suggest enhanced surface wind speeds poleward of 60◦N by 2030–2049, but in CNRM the climate-

induced signal is indiscriminate from internal variability (as quantified by means of the control run; blacked dashed line in

Fig. 6b). However, similar analyses of high-latitude surface wind speeds from most available 1◦ CMIP6 models (Liu et al.,
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Figure 6. Change in zonally averaged global surface wind speed by 2030–2049 relative to 1980–1999 from the (a) HadGEM, (b) CNRM,

and (c) Earth3P simulations (unit is m s−1, land areas are included). Colored meridional profiles show the results from the scenario and

historical runs (cf. Fig. 5), while the black dotted line indicates the corresponding profile from the control run.

2024; Zhang and Wang, 2024) rather favor the strengthening evident in HadGEM and Earth3P. We therefore conclude that the

increase in simulated Arctic pb variability by the mid of the 21st century is indeed attributable to anthropogenic forcing and330

specifically caused by accelerated surface winds.

Along with some interesting cases of diminishing amplitudes (e.g., Northwest Pacific, Gulf Stream region), we find an

intensification of pb variability under SSP5-8.5 in the western tropical Pacific. North of New Guinea, values of R peak at

R≈ 1.3–1.5. The area is characterized by low-magnitude pb signals (Figs. 1 and 2), induced by a mix of both barotropic and

baroclinic processes that tend to be most active at annual and semiannual frequencies (e.g., Qu et al., 2008; Piecuch et al.,335

2015; Cheng et al., 2021). Indeed, the patch of intensified pb amplitudes in the western tropical Pacific vanishes when variance

ratios are formed based on non-seasonal model time series (Supplementary Fig. S1). Although more definitive diagnosis of the

processes at work is beyond our scope, we note that large parts of the tropical Pacific Ocean have positive values of R in both

HadGEM and Earth3P. This in turn hints at changes in local Ekman pumping or wind-driven Rossby waves, possibly related

to increases in stratification or migration of the Inter-Tropical Convergence Zone (cf. Qu et al., 2008; Piecuch et al., 2015).340

The third salient feature in Fig. 5, seen across all three models, is a mid-21st century intensification of ∼30–60% in pb

variance in the South Atlantic. The patch of red color sits between the Zapiola Gyre and Cape Basin (cf. Fig. 1) and is

accompanied in eastward direction by a decrease in pb variability over the Agulhas Return Current. These structures are

consistent with the patterns of projected changes in the regions’s eddy kinetic energy, as implied by future climate simulations

(Beech et al., 2022; Wang et al., 2024). In particular, global warming is expected to strengthen Southern Hemisphere westerlies345

and progressively shift them to the south (Deng et al., 2022, see also Fig. 6), thus weakening westerly winds around the
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southern coast of Africa (∼35◦S). Decelerated winds will in turn reduce volume transport and eddy kinetic energy in the

Agulhas Current, while also leading to increases in Agulhas leakage and mesoscale activity in the South Atlantic (Biastoch

et al., 2009; van Sebille et al., 2009; Beech et al., 2022). That these dynamics imprint on pb is clear from Fig. 2 and previous

model analyses (Hughes et al., 2018; Zhao et al., 2021). In addition, climate change invigorates eddy activity in the western350

part of the basin (Beech et al., 2022), and that too could contribute to the enhanced future pb variance seen in Fig. 5. Thus, the

South Atlantic and Agulhas Return Current region appear to be an interesting laboratory for linking long-term changes in pb

variability with anthropogenic impacts on the ocean circulation.

4 Summary and conclusions

We have run basic and mostly global assessments of bottom pressure signals in CMIP6-HR simulations, motivated in large355

part by the potential use of these fields in satellite gravimetry simulation studies. The climate models capture all relevant pb

phenomena that can be expected to emerge at the given resolution and under the encoded physics, e.g., eddy structures and

wind-driven variability on continental shelves and in the deep ocean. Model accuracy, as evaluated through comparisons to a

downscaled GRACE product and BPR measurements, varies with latitude, depth, frequency, and more generally the specific

dynamical regime (Figs 2 and 3, Table 2). In particular, the CMIP6-HR models tested here are susceptible to overestimation360

of topographically constrained pb variability, most notably in the Australian-Antarctic and Weddell-Enderby Abyssal plains

and at seasonal frequencies. Similar issues are apparent in NEMO-based ocean reanalyses on the ORCA025 grid (cf. Figure

3 in Gou et al., 2025), pointing to structural errors in that particular ocean model setup. As suggested in Sect. 3.2, the excess

variance may have diverse causes, including imperfect momentum transfer schemes, coarse vertical spacing of deep layers, and

the artificial blocking of ice shelf cavities. In this light, analysis of pb variability may be useful to guide model improvements365

or at least complement the standard tests of near-surface variables and meridional overturning (e.g., Zuo et al., 2017; Roberts

et al., 2019, 2020).

We have exercised a degree of caution in our comparisons of the CMIP6-HR pb fields against GRACE-DS and BPRs. Neither

reference dataset is free of error, whereas the models only approximate reality and thus disregard several legitimate contribu-

tions to the observed pb changes (e.g., GAL, barometric pressure-driven dynamics, sub-grid scale variability). These issues370

can compromise the model-data comparison, particularly in very quiet deep-ocean regions (Fig. 3) and at individual BPRs

(Fig. 4). The spatial median statistics in Table 2 are nonetheless conclusive and internally consistent enough to discriminate

more accurate models from less realistic pb representations. Specifically, in satellite gravimetry simulations, where one would

want to portray oceanic mass changes across all spatial and temporal scales, the HighResMIP contribution of Earth3P appears

to be a very sensible choice. One caveat is that compared to the models (analyzed over 1980–2014), the BPR and GRACE-DS375

variance estimates are taken over different and much shorter time periods, i.e., 2013–2023 and ∼2002–2020. However, when

narrowing the model time series to 2002–2014 (Supplementary Table S1), our basic conclusions drawn from Table 2 remained

unchanged, except for low-latitude shelf regions. The agreement is not unexpected, because the climatic conditions over the
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CMIP6-HR late historical period do not evolve as drastically as they do in the scenario extension to 2049, implying temporal

changes in pb variance that are well below those shown in Fig. 5d–f.380

Our model-based diagnosis of future climate impacts on the strength of pb fluctuations has added a new facet to the existing

bottom pressure literature. While these impacts are spread over regions characterized by very different dynamics (i.e., Arctic,

tropical Pacific, Agulhas leakage), an origin in altered wind forcing (Fig. 6) is likely common to all three cases. Dedicated

modeling work, such as stand-alone ocean simulations under distinct forcing assumptions, will be required to shed light on

the exact processes at work. More generally, the reported strengthening of regional pb variability awaits confirmation through385

analysis of output from other climate models and perhaps, at some point, also through actual observations. Here we have

made our inferences based on variance metrics in bi-decadal windows 50 years apart, but the noted pb amplitude increases in

the Arctic, tropical Pacific, and parts South Atlantic also emerge when using a reference periods shifted forward by 15 years

(1995–2014, Supplementary Fig. S2). Thus, given the planned continuity of space-based mass change monitoring (Daras et al.,

2024), climate-driven changes in large-scale, dynamic pb variability may be soon detectable with satellite gravimetry.390

Data availability. The datasets used in this study are available from the following links: CMIP6 HighResMIP output (https://esgf-data.dkrz.d

e/search/cmip6-dkrz/), GRACE-DS (https://doi.org/10.3929/ethz-b-000686843 Gou et al., 2024), DART® historical data (https://www.ndbc

.noaa.gov/historical_data.shtml), and ECCOv4r4b (https://cmr.earthdata.nasa.gov/virtual-directory/collections/C2129193421-POCLOUD).

Monthly pb fields from all five CMIP6-HR models analyzed in this study have been placed at https://doi.org/10.5281/zenodo.14886818 (Liu

et al., 2025).395

Author contributions. L. L.: Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing - original draft,

Writing - review & editing. M. S.: Conceptualization, Funding acquisition, Methodology, Supervision, Validation, Writing - original draft,

Writing - review & editing. L. B.: Software, Writing - review & editing. J. F.: Formal analysis, Software, Writing - review & editing. J. G.:

Methodology, Writing - review & editing.

Competing interests. The authors declare no conflict of interests.400

Acknowledgements. This study was supported by the German Research Foundation (DFG, Project nos. 388296632 and 459392861), and

represents a contribution to the New Refined Observations of Climate Change from Spaceborne Gravity Missions (NEROGRAV) project.

18

https://doi.org/10.5194/egusphere-2025-775
Preprint. Discussion started: 26 February 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Adcroft, A., Hughes, C., and Marshall, J.: Representation of topography by shaved cells in height coordinate ocean model, Mon. Weather

Rev., 125, 2293–2315, https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2, 1997.405

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical

Memorandum NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M, 2009.

Androsov, A., Boebel, O., Schröter, J., Danilov, S., Macrander, A., and Ivanciu, I.: Ocean bottom pressure variability: Can it be reliably

modeled?, J. Geophys. Res. Oceans, 125, e2019JC015 469, https://doi.org/10.1029/2019JC015469, 2020.

Beech, N., Rackow, T., Semmler, T., Danilov, S., Wang, Q., and Jung, T.: Long-term evolution of ocean eddy activity in a warming world,410

Nat. Clim. Change, 12, 910–917, https://doi.org/10.1038/s41558-022-01478-3, 2022.

Bernard, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg,

J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theeten, M., McClean, J., and De Cuevas, B.: Impact of partial steps

and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567,

https://doi.org/doi.org/10.1007/s10236-006-0082-1, 2006.415

Bernard, E. N. and Meinig, C.: History and future of deep-ocean tsunami measurements, in: Proceedings of Oceans’11 MTS/IEEE Kona,

6106894, pp. 1–7, IEEE, 2011.

Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J. R. E.: Increase in Agulhas leakage due to poleward shift of Southern

Hemisphere westerlies, Nature, 462, 495–498, https://doi.org/10.1038/nature08519, 2009.

Bingham, R. and Hughes, C.: The relationship between sea-level and bottom pressure variability in an eddy-permitting ocean model, Geo-420

phys. Res. Lett., 35, L03 602, https://doi.org/10.1029/2007GL032662, 2008.

Bingham, R. J. and Haines, K.: Decadal ocean bottom pressure variability and its associated gravitational effects in a coupled ocean-

atmosphere model, in: Gravity, Geoid and Space Missions: GGSM 2004 IAG International Symposium Porto, pp. 298–303, Springer,

https://doi.org/10.1007/3-540-26932-0_52, 2005.

Boening, C., Lee, T., and Zlotnicki, V.: A record-high ocean bottom pressure in the South Pacific observed by GRACE, Geophys. Res. Lett.,425

38, L04 602, https://doi.org/10.1029/2010GL046013, 2011.

Börger, L., Schindelegger, M., Dobslaw, H., and Salstein, D.: Are ocean reanalyses useful for Earth rotation research?, Earth Space Sci., 10,

e2022EA002 700, https://doi.org/10.1029/2022EA002700, 2023.

Chen, L., Yang, J. Y., and Wu, L. X.: Topography effects on the seasonal variability of ocean bottom pressure in the North Pacific Ocean, J.

Phys. Oceanogr., 53, 929–941, https://doi.org/10.1175/JPO-D-22-0140.1, 2023.430

Cheng, X., Ou, N. S., Chen, J. J., and Huang, R. X.: On the seasonal variations of ocean bottom pressure in the world oceans, Geosci. Lett.,

8, 29, https://doi.org/10.1186/s40562-021-00199-3, 2021.

Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra,

A.: Global mean climate and main patterns of variability in the CMCC-CM2 coupled model, J. Adv. Model. Earth Sy., 11, 185–209,

https://doi.org/10.1029/2018MS001369, 2019.435

Daras, I., March, G., Pail, R., Hughes, C. W., Braitenberg, C., Güntner, A., Eicker, A., Wouters, B., Heller-Kaikov, B., Pivetta, T., and Pas-

torutti, A.: Mass-change And Geosciences International Constellation (MAGIC) expected impact on science and applications, Geophys.

J. Int., 236, 1288–1308, https://doi.org/10.1093/gji/ggad472, 2024.

19

https://doi.org/10.5194/egusphere-2025-775
Preprint. Discussion started: 26 February 2025
c© Author(s) 2025. CC BY 4.0 License.



De Linage, C., Rivera, L., Hinderer, J., Boy, J.-P., Rogister, Y., Lambotte, S., and Biancale, R.: Separation of coseismic and postseismic

gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change440

by normal-modes summation, Geophys. J. Int., 176, 695–714, https://doi.org/10.1111/j.1365-246X.2008.04025.x, 2009.

de Miranda, A. P., Barnier, B., and Dewar, W. K.: On the dynamics of the Zapiola Anticyclone, J. Geophys. Res. Oceans, 104, 21 137–21 149,

https://doi.org/10.1029/1999JC900042, 1999.

Deng, K., Azorin-Molina, C., Yang, S., Hu, C., Zhang, G., Minola, L., and Chen, D.: Changes of Southern Hemisphere westerlies in the

future warming climate, Atmos. Res., 270, 106 040, https://doi.org/10.1016/j.atmosres.2022.106040, 2022.445

Docquier, D., Grist, J. P., Roberts, M. J., Roberts, C. D., Semmler, T., Ponsoni, L., Massonnet, F., Sidorenko, D., Sein, D. V., Iovino, D.,

Bellucci, A., and Fichefet, T.: Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport, Clim. Dynam., 53,

4989–5017, https://doi.org/10.1007/s00382-019-04840-y, 2019.

Forget, G., Campin, J. M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear

inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, https://doi.org/10.5194/gmd-8-3071-2015, 2015.450

Fukumori, I., Raghunath, R., and Fu, L. L.: Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling

study, J. Geophys. Res. Oceans, 103, 5493–5512, https://doi.org/10.1029/97JC02907, 1998.

Fukumori, I., Wang, O., Llovel, W., Fenty, I., and Forget, G.: A near-uniform fluctuation of ocean bottom pressure and

sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas, Prog. Oceanogr., 134, 152–172,

https://doi.org/10.1016/j.pocean.2015.01.0135, 2015.455

Gill, A. E. and Niller, P. P.: The theory of the seasonal variability in the ocean, Deep Sea Res. Oceanogr. Abstr., 20, 141–177,

https://doi.org/10.1016/0011-7471(73)90049-1, 1973.

Gou, J. Y., Börger, L., Schindelegger, M., and Soja, B.: SeDA-OBP: Global ocean bottom pressure anomaly fields with a spatial resolution

of 0.25 degrees from self-supervised data assimilation, ETH Research Collection, https://doi.org/10.3929/ethz-b-000686843, 2024.

Gou, J. Y., Börger, L., Schindelegger, M., and Soja, B.: Downscaling GRACE-derived ocean bottom pressure anomalies using self-supervised460

data fusion, J. Geodesy, 99, 19, https://doi.org/10.1007/s00190-025-01943-9, 2025.

Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich,

U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G.,

Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP

versions of EC-Earth: EC-Earth3P andEC-Earth3P-HR – description, model computational performance and basic validation, Geosci.465

Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020.

Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Harden-
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