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Abstract. Projections from global climate models (GCMs) are a fundamental information source for climate adaptation poli-

cies and socio-economic decisions. As such, these models are being progressively run at finer spatio-temporal resolutions

to resolve smaller scale dynamics and consequently reduce uncertainty associated with parameterizations. Yet even with in-

creased capacity from High Performance Computing (HPC) the consequent size of the data output (which can be on the order

of Terabytes to Petabytes), means that native resolution data cannot feasibly be stored for long time periods. Lower resolution5

archives containing a reduced set of variables are often all that is kept, limiting data consumers from harnessing the full poten-

tial of these models. To overcome this growing challenge, the climate modelling community is investigating data streaming;

a novel way of processing GCM output without having to store a limited set of variables on disk. In this paper we present a

detailed analysis of the use of one-pass algorithms from the ’one-pass’ package, for streamed climate data. These intelligent

data reduction techniques allow for the computation of statistics on-the-fly, enabling climate workflows to temporally aggregate10

the data output from GCMs into meaningful statistics for the end-user without having to store the full time series. We present

these algorithms for four different statistics: mean, standard deviation, percentiles and histograms. Each statistic is presented

in the context of a use case, showing the statistic applied to a relevant variable. For statistics that can be represented by a single

floating point value (i.e., mean, standard deviation, variance), the accuracy is at the order of the numerical precision of the

machine and the memory savings scale linearly with the period of time covered by the statistic. For the statistics that require15

a distribution (percentiles and histograms), we present an algorithm that reduces the full time series to a set of key clusters

that represent the distribution. Using this algorithm we find that the accuracy provided is well within the acceptable bounds

for the climate variables examined while still providing memory savings that bypass the unfeasible storage requirements of

high-resolution data.
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1 Introduction20

Understanding how extreme events, both at regional and global scales, are going to impact society under climate change is of

ever growing importance (Seneviratne et al., 2012; Rising et al., 2022; Pörtner et al., 2022). Projections from global climate

models (GCMs) are regularly used to create information for climate adaptation policies and socio-economic decisions. As

demand for accuracy in these projections grows, GCMs are being run at increasingly finer spatio-temporal resolution to capture

both small-scale processes, such as convective storms and oceanic eddies, as well as larger atmospheric dynamics through the25

improved representation of the interaction between small and large scale dynamical processes (Palmer, 2014; Bador et al.,

2020; Iles et al., 2020; Stevens et al., 2020; Rackow et al., 2024). These increases in resolution are also beneficial for end-user

analyses or applications, that typically require local information and frequent time samples to produce accurate estimates of

climate impacts (Katopodis et al., 2021; Orr et al., 2021).

Due to the ongoing movement in the climate community towards increasingly higher spatio-temporal resolutions of climate30

data, questions are beginning to arise as to how this data will be managed (Hu et al., 2018; Bauer et al., 2021). The growing

size of the data output makes the current state-of-the-art archives (e.g., Coordinated Regional Climate Downscaling Experiment

(CORDEX) and Coupled Model Intercomparison Project (CMIP)), unfeasible. Moreover, the current archival method has left

some data users without their required data as climate model protocols either limit the number of variables stored or reduce their

resolution and frequency (e.g., by storing monthly means or interpolated grids) to cope with the size of the archives. As such,35

initiatives such as Destination Earth (DestinE) (Bauer et al., 2021; Hoffmann et al., 2023) are investigating the novel method of

data streaming, where output arrives to the data consumer in a continuous stream (Kolajo et al., 2019; Marinescu, 2023). Data

streaming allows access to the climate data at the highest frequency available (e.g., hourly), at native spatial resolution in near-

real model run-time. In the context of the climate impact community, this means that climate impact information can be created

alongside the climate model, without having to wait for the full simulation to be completed. This provides an unprecedented40

time-scale reduction to access the data and produce meaningful output compared with the current simulation paradigm (e.g.,

CMIP) and the possibility of using variables and frequencies not previously available.

Yet the advent of data streaming in the climate community poses its own set of challenges. Often, downstream data users

require climate data that spans long temporal periods. For example, many hydrological impact models require daily, monthly

or annual maximum precipitation values (Teutschbein and Seibert, 2012; Samaniego et al., 2019), while in the wind energy45

sector, accurate distribution functions of the wind speed are essential (Pryor and Barthelmie, 2010; Lledo, 2019). Obtaining

these statistics that span time scales that are potentially longer than the data streaming window can no longer be done using

the traditional methods. As data in a stream can only be accessed once, this introduces the one-pass problem; how to compute

summaries, diagnostics or derived quantities without having access to the whole time series?

In this paper we present a detailed analysis of the use of one-pass algorithms and how they work as intelligent data reduction50

techniques for streamed climate simulation data. Normally, the computation of statistics is done using the conventional method,

where two sequential passes are made through a dataset, first to gather relevant information, and then to perform calculations

based on that information. This method requires having the entire dataset available when the computation is performed and we
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will refer to it as the ‘conventional’ method throughout the paper to signify the common way of calculating statistics. Unlike

the conventional method, one-pass algorithms do not have access to a whole time series, rather, they process data incrementally55

every time that the model outputs new time steps (Muthukrishnan, 2005). This is done by sequentially processing data chunks

as they become available, with each chunk’s value being incorporated into a rolling summary which is then moved into an

output buffer before processing the next chunk. While these algorithms have been adopted in other fields such as online trading

(Loveless et al., 2013) and machine learning (Min et al., 2022), they have yet to find a foothold in climate science, mainly

because they have not been necessary until now. Through this work, we show the foundations of the infrastructure required for60

the climate community to harness the capabilities of high spatio-temporal climate data through data streaming.

This paper is organised as follows. In Sect. 2 we present the mathematical notation used throughout this paper to describe

the statistics. Sects. 3 to 5 then cover the algorithms used for the mean, standard deviation and distributions respectively.

These statistics have been chosen as they represent the most commonly required statistics for climate data, however many

other statistics (i.e., minimum, maximum, threshold exceedance etc.) can be implemented using the same approach. For each65

statistic, the one-pass algorithm is first presented, followed by a use case example which applies the algorithm to a relevant

variable over a meaningful time span. With the aid of these use cases, the numerical accuracy compared to the conventional

approach (being able to read the dataset as a whole to compute the statistic) are given, along with the memory savings provided.

In Sect. 6 we discuss the concept of convergence and how the one-pass statistics can be used for bias-adjustment of streamed

climate data. Finally conclusions are drawn in 7. We further note that the full Python implementation of these algorithms, ready70

for use in a streaming workflow, can be found at Grayson (2025) (v0.6.2) and request the reader to follow the documentation

for details on implementation.

2 Mathematical notation

For a given dataset, the following mathematical notation is used to describe the one-pass algorithms:

– n is the current number of data samples (time steps) passed to the statistic.75

– w is the length of the incoming data chunk (number of time steps).

– c is the number of time steps required to complete the statistic (i.e., if the model provides hourly output and we require

a daily statistic, c = 24).

– xn is one time step of the data at time t = n.

– Xn = {x1,x2, . . . ,xn} represents the full dataset up to t = n.80

– Xw = {xn+1, . . . ,xn+w}, is the incoming data chunk of length w.

– Sn is the rolling summary of the statistic before the new chunk at time t = n. This summary varies for each statistic i.e.,

if it is the mean statistic Sn = X̄n. This rolling summary will always be of length one in the time dimension.
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– g is a one-pass function that updates the previous summary Sn with then new incoming data Xw.

We introduce the chunk length w as, in many cases, a data stream containing a few consecutive time steps will be outputted85

from a climate model in one go. In the case where the incoming data stream has only one time step, (w = 1), Xw, reduces to

xn+1.

3 Mean

3.1 Algorithm description

The one-pass algorithm for the mean is given by90

X̄n+w = g(Sn,Xw) = X̄n + w

(
X̄w − X̄n

n + w

)
, (1)

where X̄n+w is the updated rolling mean of the dataset with the new data chunk Xw and the rolling summary Sn is given by

the rolling mean X̄n. If w > 1, X̄w, is the temporal conventional mean over the incoming data chunk, however if the data is

streamed at the same frequency of the model output with w = 1 then X̄w = xn+1, where xn+1 is the incoming time stamp.

3.2 Temperature95

We apply the mean one-pass algorithm given in eq. (1) in the context of temperature. Understanding the average trends of

temperature is crucial, especially considering the ongoing global and regional occurrences of temperature extremes (Mikkonen

et al., 2015; Russo et al., 2015). New European projects such as NextGEMS (a) and DestinationEarth (2024) are aiming

to provide global climate projections for a variety of variables at spatial resolutions ranging from 0.025 to 0.1°. This will

allow for granular analysis of projected temperatures to inform climate adaptation at regional scale, yet performing basic100

computations with such vast amounts of data can prove challenging. In this use case for the mean algorithm, we use data

from ECMWF’s Integrated Forecasting System (IFS) model coupled with the Finite Element / Volume Sea-ice Ocean Model

(FESOM) (experiment tco2559-ng5-cycle3) (Koldunov et al., 2023; Rackow et al., 2024) (run as part of the NextGEMS (a)

project), looking at the 2 m temperature over March 2020. We use the hourly data at native spatial resolution (∼ 0.04°),

resulting in a global map containing approximately 26.31 million spatial grid cells, 744 time steps and a full size of 145.82 GB105

with double precision (float64).

We calculated the March monthly mean of this data using both the conventional method and the one-pass algorithm given in

eq. (1). Computing the temporal conventional mean of this data requires the full time series to be loaded into memory, summed

across every cell then divided by the length of the time dimension (in this case 744). Due to the high memory requirements of

this dataset, this was performed on a high memory node (256 GB) on the Levante supercomputer. The data set was re-chunked110

into 10 spatial chunks using the Python library dask-xarray (Dask, 2024), where each chunk could fit into available memory.

The conventional mean was then computed on each chunk. For the one-pass computation, we used a chunk length of w = 1

and called into memory each hour xn of the dataset to simulate streaming, iteratively updating eq. (1) until n = c. These two
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Figure 1. (a) Global monthly mean of the 2 m temperature over March 2020 using hourly data from the IFS model, computed using the

one-pass algorithm method given in eq. (1). (b) The absolute difference between (a) and the mean calculated using the conventional method,

calculated using the python package numpy (Harris et al., 2020).

methods highlight that with such large data sets the conventional mean is not necessarily the simplest approach, as we still

need specialised tools and high memory resources for computation. Rather than adding additional complexity, the one-pass115

approach allows for simpler handling and easier computation.

The results of the one-pass mean can be seen in Figure 1(a). We note that for plotting convenience the native grid was

interpolated to a 0.1° regular lat-lon. Figure 1(b) shows the absolute difference between the conventional and the one-pass

mean shown in (a). The difference is represented by randomly distributed noise at the order of 10−12, consistent with the

numerical precision of the data. This negligible absolute difference is therefore attributed to the machine precision as opposed120

to algorithmic discrepancies and is well below the accuracy required for the variable.

With regards to the memory savings, the one-pass method requires only two data memory blocks, X̄w and xn, both approx-

imately 200 MB with double precision (which is the size of one global time step), to be kept in memory at any one point in

time. If this computation was performed in real streaming mode this would require only ∼400 MB of memory to compute

the monthly mean, 2/744th of the 145.82 GB memory requirements for the conventional method. We also note here that the125
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memory cost of the one-pass is independent of the length of the statistic span. For the case of w = 1, the memory requirements

will always be twice that of storing a spatial field, as opposed to the conventional method where the memory requirements will

increase linearly with the length of the time series required to compute the statistic.

Moreover, this computation demonstrates that the one-pass do not merely provide memory savings; they provide user-

oriented diagnostics that allow for easy computation. Due to this vast reduction in memory requirements, different variables130

can be computed in parallel to each other, further aiding usability. The current paradigm of loading the entire dataset is not

practical (and in some cases not possible) for data of this magnitude. Indeed, special tools such as Python’s dask-xarray

packages are often required.

4 Standard deviation

4.1 Algorithm description135

The one-pass algorithm for the standard deviation (and also variance) is calculated over the requested temporal frequency c,

by updating two estimates iteratively; the one-pass mean and the sum of the squared differences. First, let the conventional

summary for the sum of the squared differences, Mc, be defined as

Mc =
c∑

n=1

(
xn− X̄c

)2
, (2)

where X̄c is the conventional mean of the whole dataset Xc required for the statistic. For the one-pass calculation of the140

standard deviation the rolling summary Sn defines the sum of the squared differences, Mn. In the case where w = 1, the

rolling summary is updated by

Mn+1 = g(Sn,xn+1)

= Mn +
(
xn+1− X̄n

)(
xn+1− X̄n+1

)
, (3)

where X̄n and X̄n+1 are both given by the algorithm for the one-pass mean in eq. (1). Eq. (3) is known as Welford’s algorithm.

In the case where the incoming data has more than one time step (w > 1), Mn is updated by145

Mn+w = g(Sn,Xw)

= Mn + Mw +
wn

(
X̄n− X̄w

)2

n + w
, (4)

where Mw is the conventional sum of the squared differences over the incoming data block of length w (given by eq. (2) with

c = w), X̄n is the one-pass mean at t = n calculated with eq. (1) and X̄w is the conventional mean of the incoming data block.

See Mastelini and de Carvalho (2021) for details.

Once enough data has been added to the rolling summary Mn so that n = c we calculate the standard deviation σ using150

σ =

√
Mn

n− 1
, (5)

where Mn is divided by n− 1 to obtain the sample variance. Eq. (5) also applies to the conventional summary Mc.
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4.2 Sea surface height variability

We apply the one-pass algorithm for standard deviation to the sea surface height (ssh). When evaluating the output of any

climate model it is necessary to check scientific soundness and quantify uncertainty through quality assessment checks. For155

ocean data, one such method of soundness can be the standard deviation of the ssh between different model ensembles com-

pared to satellite altimetry data. The ssh can be used to better understand ocean dynamics as its variability gives insights into

the redistribution of mass, heat and salt within the water column (Close et al., 2020).

We calculate the annual standard deviation using data from the FESOM model (experiment tco2559-ng5-cycle3) (Rackow

et al., 2024), again run as part of the NextGEMS (a) project. We use daily data over 2021 at native resolution (∼0.05°), making160

an annual time series - comprised of 7.4 million grid cells and 365 time slices - of 10.09 GB using single precision (float32).

We first calculate the standard deviation using the conventional method defined in eq. (2), implemented with Python’s numpy

package (Harris et al., 2020), followed by the one-pass method in eq. (4), with w = 2. Like with the mean calculation, for the

conventional calculation the data was spatially rechunked into 10 chunks using the Python library dask-xarray and each chunk

was computed separately, while for the one-pass, two daily time steps were iteratively called into memory to simulate data165

streaming.

Figure 2(a) shows the one-pass standard deviation calculated using eq. (4) and eq. (5). Figure 2(b) then shows the difference

between the one-pass and the conventional calculation. Again, for plotting convenience the native grid was interpolated to a

0.25° regular lat-lon. Here the order of magnitude on the difference is 10−16; even smaller compared with the mean difference

in Fig. 1(b). Interestingly we also see some structure emerging in the differences shown in Fig. 2(b) which correlates with areas170

of larger standard deviation, however due to the extremely values it is considered negligible in comparison to the required

accuracy of the statistic. Therefore, as with the mean statistic, this difference can also be attributed to machine precision

limitations.

The memory savings for the standard deviation are slightly less than the mean one-pass algorithm as here, in the case of

w > 1, other than the current data memory block Xw, four additional data summaries are required to be kept in memory, Mn,175

Mw, X̄n, X̄w. Yet, as with the mean, these memory requirements are independent of the time-span (sample size) of the statistic

and do not increase as the number of values required to complete the statistic (c) increases. In the example presented here with

w = 2, approximately 112 MB (single precision) is required in memory, as opposed to the full 10.09 GB of the full dataset.

This is a reduction of two orders of magnitude for the memory requirements.

5 Distributions: percentiles and histograms180

5.1 Algorithm description

Unlike the one-pass algorithms for mean and standard deviation (and others such as minimum, maximum, threshold ex-

ceedance), where the rolling summary Sn can be described by one floating point value, estimates of a distribution cannot

be condensed in such a way. The t-digest algorithm has been developed by Dunning and Ertl (2019) and Dunning (2021) to
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Figure 2. (a) Global annual standard deviation of the sea surface height over 2021 using daily data from the FESOM model, computed using

the one-pass method given in eq. (4) and eq. (5). (b) The difference between the one-pass computation and the conventional computation.

create reliable estimates of probability distribution functions with one pass through the dataset. The t-digest algorithm is used185

here - to the best of our knowledge - for the first time on climate data.

The t-digest algorithm is a clustering algorithm where the dataset, Xn, is represented by a series of clusters. Each cluster

is summarised by a mean value and a corresponding weight, representing the average value in the cluster and the number

of samples that have contributed to the cluster respectively. The data is added to each cluster in such a way that clusters

corresponding to the extremes of the distribution will contain far fewer samples than those around the median quantile, meaning190

that the error is relative to the quantile, as opposed to a constant absolute error seen in previous methods (Dunning and Ertl,

2019).

For all the results presented in Sect. 5 we use the Python package crick (Crist-Harif, 2023) for the implementation of the

t-digest algorithm and note that other packages may provide different results. There are two different algorithmic methods

within t-digest, one known as merging and one as clustering. Here we focus on the clustering algorithm, which adds each value195

in a streamed data chunk, Xw, to its nearest cluster. The unequal size (i.e., number of samples) contributing these clusters are

set by the scale function. While there are different scale functions that can be used, the implementation of the t-digest used in
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Figure 3. Number of clusters used to represent datasets of varying lengths as a function of the compression parameter δ. The corresponding

memory consumption [kB] is given on the right hand axis. Six random datasets (sampled from a uniform distribution) of lengths ranging

from 50 to 1000 are used.

this paper uses the scale function

k(q) =
δ

2π
sin−1(2q− 1), (6)

where q is the quantile, k is the scale function and δ is the compression parameter. Dunning and Ertl (2019) Figure 1 provides200

a visual representation of the scale function which shows a steeper gradient of k near q = 0 and q = 1, reducing the cluster

weights and increasing the accuracy at the tails. This compression parameter does not affect the shape of the scale function

but it does increase the range of k. The greater the range of k the more clusters will be used to represent the dataset, meaning

a small value of δ will lead to less clusters, less accuracy and more memory saving and vice-versa for a higher δ. These

clusters can then be converted either to histograms (where bin densities may have non-integer values due the underlying cluster205

representation) or percentile estimates of the distributions.

The effect of the compression parameter δ on the memory requirements is shown in Fig. 3 (the effects on accuracy of

the percentile estimates are given in Sects. 5.2 and 5.3). Here, six random datasets (from a uniform distribution) of different

lengths are used to show how many clusters are required to represent the data as a function of δ (within the range 20 ≤ δ ≤
140). Beyond a sample size of approximately 350, shown by the darkest three samples, the number of clusters used to represent210

the data grows linearly with δ. This means that, for the range of δ tested, for all datasets with more than 350 values, the number

of clusters is independent of the size of the dataset and is set only by δ i.e., a dataset of 500 values will be represented with the

same number of clusters as a dataset of 5 million values.

For smaller dataset sizes (anything below 350, as shown by the three lighter blue / green samples on Fig. 3) the limit on the

number of clusters may be set by the number of samples in the dataset. For example, beyond δ = 40, the maximum number215

of clusters used to represent the the shortest (light green) dataset is 50. The number of clusters cannot grow anymore as it

is already the length of the dataset meaning the distribution is represented in its entirety, with each cluster containing one
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data sample and a weight of one. As the length of the dataset grows, the number of clusters also increases until it reaches the

maximum limit defined by δ and shown by the larger datasets in Fig. 3. The key message to take away from this analysis is that,

for datasets containing less than 350 samples, there may be no memory savings generated from using this algorithm, as each220

cluster requires two values (mean and weight) for its representation. For example, when considering δ = 140 and a sample

size of 350, 180 clusters are used, requiring 360 values, which exceeds the length of the original dataset. However, for longer

sample sizes and/or smaller δ, the memory savings generated are substantial.

In the following Sects. 5.2 and 5.3, we examine the use of the t-digest algorithm with two case studies; wind energy in

Sect. 5.2 and extreme precipitation events in Sect. 5.3. These two examples have been chosen to examine how well the t-digest225

algorithm represents both the middle of a distribution around the median percentiles and its ability to capture extreme events

at the tails of a heavily skewed distribution.

5.2 Wind energy

We present an application of the t-digest in the context of wind energy. With the decarbonisation of the energy system turning

into a global necessity, renewable energies such as solar and wind are becoming major contributors to the power network230

(Jansen et al., 2020). According to the Agency (2024), global installed capacity of wind energy, including both offshore and

onshore resources, is expected to reach 1.72 TW by the end of 2028. However, unlike with fossil fuels, wind energy production

is heavily affected by atmospheric conditions, subject to both short-term variability (i.e., weather), and longer term variations

caused by seasonal and/or interannual variability (Grams et al., 2017; Staffell and Pfenninger, 2018). This volatility makes the

integration of wind energy into the power network a challenging task (Jurasz et al., 2022).235

Having access to histograms of wind speed at high frequency (i.e., at hourly or sub-hourly scale) and hub height (i.e., height

of the turbine rotor) is among the requirements of wind farm operators and stakeholders to estimate the available wind resources

at a particular location. This information can be combined with the power curve of the turbines installed at each location to give

reasonable estimates of energy production over a period of time. Obtaining an accurate representation of the wind distribution

is therefore crucial, as they condense the information from climate simulations required by the wind energy industry and aid in240

both the understanding of future output from current farms and in the decision-making relating to the viability of a proposed

wind farm location (Lledo, 2019). Currently, there are two main methods for describing wind speed distributions; through full

histograms of time series data or through fitting probability distribution functions to the data (Morgan et al., 2011; Shi et al.,

2021). While the non-parametric approach (time series) generally outperforms the parametric (statistical) one in accurately

characterizing the distribution (Wang et al., 2016), it poses numerous challenges attributable to the large amounts of data245

required (Shi et al., 2021).

Here we investigate the use of the t-digest algorithm to estimate the wind speed distribution from streamed climate data.

We use again data from ECMWF’s IFS model (experiment tco2559-ng5-cycle3), this time looking at the 10 m wind speeds

over December 2020. We again use the hourly data at native spatial resolution (∼ 0.04°), resulting in a global map containing

approximately 26.31 million spatial grid cells, 744 time steps and a full size of 145.82 GB with double precision (float64).250

Wind speed is calculated from the root of the sum of the squares of the 10 m hourly-mean northward and eastward horizontal
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components. We conduct a detailed analysis on two locations, the offshore Moray East wind farm, located at (58.25 °N, 2.75

°E) in the North Sea, and the onshore Roscoe wind farm, positioned at (32.35 °N, 100.45 °W) in Texas. Both are marked on

the global map in Fig. 4(a) in red and pink respectively.

Figure 4 shows a detailed comparison between how the t-digest and the conventional method (implemented using the numpy255

package in Python) describe a distribution. For the t-digest method, we used w = 1, meaning each xn was added to its’

respective digest consecutively, to simulate data streaming. We start by examining the quantile-quantile plots in Fig. 4(b) and

(e). Here the numpy percentile estimate is compared to the t-digest estimate (using δ = 60) for all percentiles ranging from 1

to 100. The grey shaded areas indicate the range of wind speeds in which most commonly used turbine classes operate (Lledo,

2019). For the off-shore location in the North Sea, the extreme maximum percentiles lie outside the grey shaded region, but260

the lower tail is within it, whereas for the on-shore location in Texas the opposite is true for the shaded region. This shows

that an accurate representation of the full wind speed distribution is required in order to cover the typical range of wind speeds

relevant to wind farms. Both (b) and (e) show an almost perfect linear relationship. The main difference between the two lies

in the storage requirements, with 5.95 kB needed to store the full 744 value time series of one grid cell used to generate the

numpy distribution estimate, compared to the 1.28 kB storage for the t-digest estimate based on 80 clusters (δ = 60).265

Given such a high level of accuracy achieved with δ = 60, we further investigate the effects of compression in Figures 4(c)

and (d). For the same two locations, the difference in the estimate of the 50th and 80th percentiles between the two methods

are shown as a function of δ. The difference is represented as a percentage of the numpy percentile estimate calculated using

the default linear interpolation method. The error bars represent the range of possible differences between the t-digest and

the numpy estimates obtained from using eight of the available interpolation schemes. These different interpolation schemes,270

outlined in Hyndman and Fan (1996), will provide a larger range in a percentile estimate if the data points are more sparsely

distributed in the region of interest. Therefore, when any type of interpolation is required to estimate a percentile, there will

always be a range a possible values depending on the interpolation method chosen. These error bars show how the t-digest

compares against different methods available in Python. We see that the difference for the Roscoe wind farm in Texas, while

incredibly small, is slightly higher for both the 50th and 80th percentiles. This is due to the shape of the two distributions, as275

evident in the histograms in (b) and (e). Although the Moray East dataset has a larger variance, it more closely resembles a

normal distribution, whereas the dataset for Roscoe is more uniform with the peak skewed to the left. The shape of the scale

function given in eq. (6) will result in clusters with the lowest weight representing the distribution tails, while the clusters

representing the middle of the distribution will have a larger weight. This is a clever characteristic of the algorithm, as due to

the bulk of the data in a normal distribution being centered around the median, these middle clusters can afford to be larger280

and cover a broader range of values without impacting precision. As the data from the Roscoe site slightly deviates from this

normal distribution, a small increase in the difference is observed.

However, despite this perceived higher difference for the Roscoe wind farm in Texas, the maximum differences for both the

50th and 80th percentiles are approximately 2% and 0.6% respectively, decreasing significantly as we increase δ. Converting

these differences back into absolute terms, the maximum differences (at the lowest values of δ) are 0.075 and 0.1 m s−1285

respectively, errors which would be considered extremely small for the end users. Moreover, while the 50th percentile estimate
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Figure 4. (a) Global map showing the absolute mean difference between the t-digest (δ = 60) and numpy (using the linear interpolation

method) estimate of all wind speed percentiles from 1 to 100 given as a percentage of the numpy value. Wind speed hourly data across

December 2020 from the IFS model. The map highlights two wind farm locations, one off-shore called Moray East in the North Sea (58.25

°N, 2.75 °E), marked with a red dot and another on-shore called Roscoe in Texas (32.35 °N, 100.45 °W), marked with a pink dot. (b) The

quantile-quantile plot for percentiles 1 to 100 calculated using Python’s numpy and the t-digest algorithm (with δ = 60) for the off-shore

location in the North Sea. The black dashed line represents the one-to-one fit, while the grey shaded area shows the range of wind speeds

that most commonly used turbines operate in (Lledo, 2019). The upper light blue histogram is made using the t-digest algorithm (δ = 60)

while the darker blue is made using the built-in Python function. (c) The difference between the t-digest and numpy calculation of the 50th

percentile, given as a percentage of the numpy value, as a function of δ for both marked locations. The error bars show the possible differences

when employing all available numpy interpolation schemes, rather than the default linear interpolation method. (d) The same information as

(c) but showing the difference for the 80th percentile. (e) The same as (b) but for the on-shore location in Texas.
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at the Roscoe wind farm has the largest differences across all compression factors (light pink data in (c)) it also has the

largest error bars, indicating that the conventional method also contains greater uncertainty. This highlights that the different

interpolation methods used by numpy have a larger impact on the given result due to the sparser data, also explaining why the

discrepancy between the one-pass and conventional methods is higher for this percentile estimate.290

To ensure that the low differences shown in 4(b)-(e) are not specific to the two chosen locations, we calculated the absolute

mean percentile difference (average across all percentile estimates from 1 to 100 i.e., over the quantile-quantile plots) for

every global grid cell for δ = 60, the results of which are shown in 4(a). Again, the data has been regridded to 1° for plotting

convenience. In this global map, no difference exceeds 0.9% of the numpy value. Converting to absolute terms, this translates

to no mean difference exceeding 0.068 m s−1 across the globe. Taking the global spatial average of these mean differences295

gives 0.020 m s−1. Based on this analysis, and the observed asymptote in the difference around δ = 60 in 4(c) and (d), we

note that further increasing the compression parameter would not significantly enhance the accuracy of the results for the wind

speed distribution. Indeed, given the extremely small calculated difference, using a δ = 40 would likely be sufficient to capture

the distribution of global wind speed data required for users. Overall, as wind speed is best described by a Bi-modal Weibull

distribution (Morgan et al., 2011), for monthly wind speed data at hourly time steps, the t-digest with δ = 60 is more than300

suitable to fully represent the overall distribution while reducing the overall size of the global monthly data from 145.82 GB

to ∼33.2 GB. Looking at the monthly time series in one grid cell, this is compressed from 5.9 kB to 1.2 kB. For δ = 40, this

would reduce further to 0.85 kB.

This analysis has been conducted on monthly wind speed data, consisting of 744 samples (i.e. hourly values). With the

compression of δ = 60, we obtain an approximate five-fold reduction in memory requirements. If we were interested in a305

longer time series, for example annually, the hourly time series for one grid cell would require 8760 values (∼ 70 kB), while its

representation with the t-digest would still only require 1.2 kB. On the contrary, if our interest were in weekly datasets with a

time step of 1 hour, containing only 168 values (∼ 1.3 kB), using δ = 60 would would still require 1.2 kB. Here no significant

memory savings would be obtained, although the histograms could still be provided in real time to the users.

5.3 Precipitation310

In the following Sect. we focus on the t-digest algorithm in the context of extreme precipitation events. It is necessary to

examine these extreme events as intense rainfall and potential flood risk pose great social, economical and environmental

threats. Both theory and evidence are showing that anthropogenic climate change is increasing the risk of such extreme events,

especially in areas with high moisture availability and during tropical monsoon seasons (Gimeno et al., 2022; Thober et al.,

2018; Donat et al., 2016; Asadieh and Krakauer, 2015). The need for climate adaptation measures in vulnerable communities315

exposed to these risks is pressing and, as with the other use cases in this paper, an accurate representation of the hazard is

essential. Consequently, our focus here is on assessing how accurately the t-digest algorithm captures extreme events associated

with the upper tail of precipitation distributions.

In this analysis, we use data from the ICOsahedral Non-hydrostatic (ICON) model (Jungclaus et al., 2022; Hohenegger et al.,

2023) (experiment ngc2009) looking at precipitation over August 2021. We use half-hourly data using the Healpix spatial grid320
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(Gorski et al., 2005) (∼ 0.04°) containing 20.9 million grid cells. The full monthly dataset for this variable, containing 1488

time steps, requires 116.25 GB of memory using single precision (float32). The precipitation flux, given in kg m−2 s−1, has

been converted to mm day−1 for greater clarity. In the same way as the other sections, for the one-pass method we process the

data sequentially with w = 1 to mimic data streaming.

Figure 5 illustrates the comparison between numpy and the t-digest in their estimates of the 99th percentile, with a focus325

on four specific locations characterized by different precipitation distributions. The chosen four locations, shown by different

shades of pink in Fig. 5(a), represent a range of different precipitation distributions over this period and the locations in Brazil

and the North Pacific have been specifically chosen to highlight the areas of largest discrepancy between the one-pass and

conventional methods. A common theme amongst all of these distributions is that they are heavily skewed, with the majority

of the data falling around zero when there is very little to no precipitation. The dark red histogram in 5(c) represents a location330

in Brazil (13.50 °S, 60.00 °W) and shows an extremely dry month with almost all of the values in the 0 and 1 mm day−1 bin

(notice the logarithmic scale). We note there is a non-integer number of samples in some of the histogram bins. These non-

integer values are due to a weighted contribution from the clusters to the histogram. The histogram in 5(d) is for a location in

Colombia (4.50 °N, 78.00 °W) and depicts heavy precipitation over the month with maximum values above 400 mm day−1 and

a more even spread across the distribution. The distribution over the location in the North Pacific (25.50 °N, 142.00 °E), shown335

in 5(e), also represents a large range of precipitation over the month with high maximum values, however the distribution is

significantly more skewed to the first bin compared with 5(d). The final location, for Pennsylvania in North America (40.50

°N, 75.00 °W), shown in 5(f), has a lower range of precipitation values and again has the vast majority of the samples located

in the first bin.

Figure 5(b) shows the absolute difference between the numpy and t-digest estimate of the 99th percentile for the total340

precipitation as a function of δ. The corresponding number of clusters for each δ is indicated in grey along the upper axis.

These differences are given on a log scale, as the North Pacific location has larger absolute differences compared to the other

locations. This location was chosen explicitly to show where the one-pass and conventional estimates supposedly deviate. In

this case (as with many locations with high absolute differences that were examined), due to the majority of data sitting around

zero, there are only a few values that comprise the remainder of the distribution. Due to this sparseness, the 99th percentile345

estimate falls in-between two data points, so the interpolation method used significantly impacts the estimate. This is reflected

in the error bars for the North Pacific location in 5(b). While the absolute difference between the t-digest and the numpy

estimate using linear interpolation is large, other numpy interpolation schemes result in a negative difference (not shown due

to the logarithmic scale), showing that the t-digest estimate lies in-between the different estimates obtained with the available

numpy interpolation schemes. These larger differences can therefore be better attributed to the low density of values at the350

upper tails as opposed to poor representation of these tails by the t-digest. The other three locations show absolute differences

around 1 mm day−1 (which is considered negligible for most applications) with a decrease in difference as δ increases. These

locations also show large error bars, again due to the highly skewed distribution and impact of interpolation, as was seen in the

North Pacific location.
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Figure 5. (a) The global map showing the absolute difference between the t-digest (δ = 80) and numpy (using the linear interpolation

method) estimate of the 99th precipitation percentile given as a percentage of the numpy value. Precipitation half-hourly data from the ICON

model (experiment ngc2009) over August 2021. The locations of the four solid pink circles are given in their respective histograms. (b)

The absolute difference between the numpy and t-digest 99th percentile estimate shown as a function of compression for the four marked

locations on (a). The upper grey axis shows the number of clusters used in each digest for each δ. The error bars represent the range of

possible absolute differences based on all available numpy interpolation schemes, in contrast to the default linear interpolation method. (c)-

(f) Histograms showing the distribution of the total precipitation (mm day−1) at all four location for their respective August 2021 time series.

Each histogram color corresponds to its location on the global map and the histograms are calculated using the t-digest with δ = 80. (g) Same

as (b) but given as a percentage of the numpy value.

Figure 5(g) shows the same differences presented in 5(b) but given as a percentage of the numpy estimate. Again this is shown355

on a logarithmic scale due to an increase (in some cases by orders of magnitude) in the difference for some locations when given

as a percentage, as shown by the Brazilian location in dark red. This dramatic increase is due to the 99th percentile estimate
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being so close to zero for distributions with almost no precipitation, such as the one in Brazil. In the t-digest representation

of these distributions, all of the streamed data points with values very close to zero are placed in a few clusters at the tail of

the distribution where they then are averaged. As the granularity inside the cluster has then been lost, the percentile estimate360

will be inaccurate. In absolute value terms this is in inconsequential as the values are so close to zero. Indeed for the Brazilian

location the absolute estimate of the 99th percentile is extremely close to that of numpy and lies around 1 mm day−1 When

represented as a percentage however, the difference can be greater than 100. To account for these unrealistically poor estimates

we calculated the percentage difference for both 5(g) and 5(a) using error = 100|(a−b)|/(b+ϵ) where a is the t-digest estimate,

b is the numpy estimate using the linear interpolation (other than the error bars in 5(g)) and ϵ = 1. This small constant ϵ is365

introduced to stabilise the calculation when b is extremely small. The results are shown globally (using δ = 80) in 5(a), again

on a logarithmic scale. The data has been regridded to 1° for plotting convenience. Most of the differences fall between 1%

and 10% of the numpy value, however due to the reasons just described some differences are unrealistically large. The average

of the global differences are shown in Table 1 as a function of δ, given as both the percentile estimate and the absolute value.

We have included this table to highlight that, due to the extremely low precipitation values for some of the estimates, a higher370

percentage difference does not necessarily translate to a higher difference in absolute terms. Even with a relatively small δ of

40 the overall relative difference of the 99th percentile (when averaged globally) is less than 4% (absolute difference of 1.27

mm day−1). Both of these differences decrease to less than 2% and 0.60 mm day−1 as δ increases to 120.

Table 1. Global average of the 99th percentile difference as a function of compression, given as both the absolute difference in (mm day−1)

and as a %.

δ |(a− b)|
(mm day−1)

100|(a− b)|/(b + ϵ)

(%)

40 1.27 3.77

60 0.91 2.63

80 0.75 2.14

100 0.65 1.86

120 0.60 1.67

Based on the results from Table 1 and Figs. 5(b) and (g) we see a reduction in difference with increasing compression that

asymptotes around δ ≈ 80. This is higher than the asymptotic value seen in Figs. 4(c) and (d) of approximately δ ≈ 60. In375

general, there are no significant accuracy improvements from using a δ more than approximately 80 (100 clusters) to represent

the precipitation distributions and we would not recommend exceeding this compression factor. Indeed, depending on the

specific accuracy requirements it may be beneficial to reduce this even further. Based on a the results from δ = 80, the entire

dataset of 116.25 GB could be represented with 36.57 GB, reducing the memory requirements by approximately a third.

One interesting point to raise is how the scale function for the t-digest algorithm - given in eq. (6) - impacts these results.380

While the differences obtained for the precipitation distributions are well within the acceptable limits for most use cases,

comparing them with the results in 5.2, we see poorer accuracy. This is due to the wind distributions more closely resembling
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a normal distribution, which is the distribution that the symmetric scale function describes best. While outside the scope of

this investigation, we note that to better represent these skewed precipitation distributions, a non-symmetric scale function

that would create larger clusters at the lower tail may more accurately capture the underlying distribution. Another method to385

improve the representation of the dataset would be to simply impose a cut-off (such as 1 mm day−1) for the data that is added

to the digests. Removing this extremely larger cluster close to zero would, in many cases, improve the representation of the

data by the t-digest.

6 Convergence

So far we have considered the comparison between the output from the one-pass algorithms vs their conventional equivalents at390

the end of the full dataset (n = c), i.e. how well do they represent the final statistic. However there is an additional aspect of one-

pass algorithms that requires consideration: the concept of convergence. These one-pass algorithms provide a rolling summary

Sn of the statistic after every time chunk, offering potential value to certain applications. For example, when performing bias-

adjustment on climate models, it is necessary to compare the model climatology (or probably distribution function) against a

reference climatology of a certain area. Bias adjustment is often based on these probability distribution functions. In streaming395

mode, we use the t-digest method to build this model probability distribution function, which will evolve as we add more

samples. Knowing how many samples need to be added to the t-digest (or rolling summary Sn) until it accurately represents

the distribution is highly valuable to these bias-adjustment algorithms within the context of streamed climate data. The bias

adjustment is only effective after enough samples have been added and adjusted, before this, Sn should not be used for further

analysis.400

This concept of convergence is explored by examining the rolling summary Sn for 2 m temperature, 10 m wind speed and

precipitation flux from the IFS and ICON models. The temperature and wind speed datasets are the same IFS datasets used

in Sects. 3 and 5.2 respectively and the precipitation dataset is the same ICON data used in Sect. 5.3. For both temperature

and wind speed the rolling summary Sn = X̄n, while for precipitation Sn is the rolling 50th percentile estimate. For all rolling

summaries w = 1, meaning that the number of samples, n, contributing to Sn grows by one each time. Unlike in the previous405

Sects. where we were interested in the value of Sn at n = c, here Sn is stored at every time step, providing a time series of its

development denoted as Sn = {S1,S2, ...,Sn}. The rolling standard deviation (σ) is then taken of Sn using eq. (4) and eq. (5).

This results in a time series of σ defined as σn = {σ1,σ2, ...,σn−1,σn}, where, for example, σn−1 represents the standard

deviation of the series Sn−1.

The outer axis in Fig. 6 shows σn over time using the temperature data at four locations marked in the legend. As expected,410

Fig. 6 shows how the series σn for the different datasets are represented - after an initial peak - by inverse exponential asymp-

totes when plotted over time. σn decreases as the distribution represented by Sn stabilizes due to the addition of more samples.

The data shown here uses temperature data but results using precipitation or wind speed data follow the same shape, just with

different maximum peak values.
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Figure 6. The convergence of the series σn for the temperature dataset. The outer axis shows four σn series where the location of the points

are given in the legend. The inner grid shows the result of the left hand side of eq. (9).

The inner axis of Fig. 6 then shows the time series of σn+1/σn of the four datasets. We plot this standard deviation ratio to415

define when the time series have converged, i.e., when sufficient samples have been added to Sn that the standard deviation of

the series Sn has stabilised. This is formally defined using the order of convergence definition

lim
n→∞

|σn+1−L|
|σn−L|q = µ, (7)

where q is the order of convergence, L is the convergence limit, σn is the standard deviation of the Sn time series at time t = n

and µ is the rate of convergence (Grau-Sánchez et al., 2010). As both q and µ are unknown in eq. (7) the order of convergence420

was estimated using

q ≈
log

∣∣σn+1−σn

σn−σn−1

∣∣

log
∣∣ σn−σn−1
σn−1−σn−2

∣∣ . (8)

Interestingly, when eq. (8) was calculated over σn for a random selection of grid points the approximation of q (for all variables)

was centered around 1. This indicated a linear convergence rate for all the standard deviation time series over the global grid

cells. Using this approximation and taking q = 1, L = 0, eq. (7) could be reduced to425

|σn+1|
|σn|

= µ + ϵ, (9)

where we have added the small parameter ϵ = 0.005, which defines the boundaries of convergence, as shown by the black

dashed lines on the inner axis of Fig. 6. Once the σn series fell within this range (and did not leave again) then σn was

considered to have converged. We emphasise that this analysis is not saying the standard deviation of the series Sn is no

longer changing. These climate variables will exhibit long time-scale temporal variability due to climate variability and change430

and we accept that their mean values and 50th percentile estimates will shift over time. What these results show is how many
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samples are required to contribute to the one-pass summary Sn until we can consider it an accurate representation of the overall

distribution at that point in time.

This analysis is shown globally in Fig. 7. In Fig. 7(a), (c) and (e) we show the global standard deviation σn of Sn at t = c

for temperature, wind and precipitation respectively. Here c = 744 for the hourly temperature and wind speed data, while435

c = 1488 for the half-hourly precipitation data. As expected, the standard deviations for all the variables are larger in areas

that experience more variability. For example, the final standard deviation of the rolling temperature mean shown in (a) shows

much larger values away from the equator where temperature averages will experience seasonal variation. Figure 7(b), (d) and

(f) then show the the number of samples required for the standard deviation σn of these rolling summaries to converge, as

defined in (9) when |σn+1|/|σn| falls within the range µ± ϵ.440

Unexpectedly, the convergence time does not have a strong correlation with the final standard deviation σn shown on the

left column. This is re-assuring, as it shows that convergence is partially independent of the actual spread of the data and

allows conservative estimates of sample size to be used for global data. What is particularly noteworthy is that, across all these

datasets, the number of samples required for convergence is extremely similar. Taking the mean value of Figs. 7(b), (d) and

(f) results in 82, 77 and 81 samples respectively. This is striking, especially given that Fig. 7(f) represents the convergence of445

the 50th percentile estimate, as opposed to the mean in Figs. 7(b) and (d). This indicates that, for hourly and half-hourly data,

approximately 4 days are required to accurately represent the month.

It should be mentioned however that this method is used as a general test of convergence for specific datasets. This analysis

was also carried on out on observational data sets (not presented), using both monthly and daily time steps, as opposed to

the climate model hourly and half-hourly data shown here. For these data sets the average number of samples required for450

convergence was approximately 50 when averaged globally. As the values of this observational data were already given as

daily or monthly summaries, extreme events (such as wind gusts) were already smoothed in the original time series. The better

the representation of shorter extreme events in the original data, the longer we would except for the data to ’converge’, as

these values will not have been pre-averaged. This is highlighted in 7(f), which uses the half hourly precipitation data. Even

though the average number of samples required is 81, there are some areas where 600 samples are needed before convergence,455

approximately double the maximum shown in 7(b) and (d). Due to the extremely short time step of this data, extreme events

will be better represented. Overall, in this Sect. we have presented how the one-pass algorithms provide added value in the

context of bias-adjustment for streamed climate data. We present a criteria for stabilisation that we use to define how many

samples are required to be added to a rolling one-pass summary Sn before that summary can be used as a representation of the

whole distribution.460

7 Conclusions

Within the climate modelling community the generation of increasingly larger data sets from higher resolution GCMs is be-

coming almost inevitable. While there is clear argument for the added value of these high resolution models, new challenges

of handling, storing and accessing the resultant data are emerging. One novel method being investigated by the DestinE project
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Figure 7. (a) The standard deviation of the full Sn time series at the end of the IFS monthly temperature time-series during March 2020.

Here Sn = X̄n. (b) The number of samples required (i.e. number of time steps) that it takes for the rolling standard deviation of the Sn time

series to converge. Convergence is defined in the text. (c) Same as (a) but for the IFS monthly wind speed time series over December 2020.

(d) Same as (b) but for wind speed. (e) Same as (a) and (c) but here Sn is the estimate of 50th using the ICON precipitation time series over

August 2021. (f) Same as (b) and (d) but for precipitation.
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(Bauer et al., 2021; Hoffmann et al., 2023) is data streaming, where climate variables at native resolution are passed directly to465

climate impact models in near model run time. This article has presented algorithms designed to handle this streamed climate

data. The application of each algorithm has been demonstrated through relevant use cases in the context of climate change

impact studies. We categorized the statistics into two different classes, ones that can be represented by a single floating-point

value, and those which require a distribution. For those that require only a single value (e.g., mean, standard deviation, mini-

mum, maximum, threshold exceedance), we obtain accuracy at the order of the machine precision, well beyond the accuracy470

required or indeed provided by climate models themselves. While providing the same result as the conventional method, these

algorithms allow the user to keep only a few rolling summaries in memory at any one time. Unlike a conventional statis-

tic, where the memory requirements for computation scale linearly as the time series grows, the one-pass algorithms for these

statistics provide an easily implemented, user-oriented method that bypasses these potentially unfeasible memory requirements.

For the statistics that require a representation of the distribution (e.g. percentiles and histograms), we applied the t-digest475

method, framed within relevant use cases. In Sect. 5.2 we focused on wind, a variable which requires an accurate representation

of the full distribution in the context of renewable energy. Using a compression factor of δ = 60 (approximately 80 clusters),

the mean absolute percentile differences for global monthly wind speeds did not exceed 0.9% of the estimate given by the con-

ventional method. For precipitation, given in Sect. 5.3, we focused on the extremes of this skewed precipitation distribution.

Due to the presence of low frequency extreme events there was more discrepancy between the numpy and t-digest estimates.480

In the cases of high absolute difference between the two estimates, there were also large error bars from the different interpo-

lation schemes of numpy. Examining these distributions showed these higher differences were due to sparseness of data in the

distribution as opposed to poor representation from the t-digest. In the case of high percentile difference, these were unrealistic

differences that occurred due to division by extremely small numbers generated from the numpy estimate and also occurred

when precipitation fell around 0 to 1 mm day−1, negligible values in terms of the user interested in extreme rainfall events.485

Overall, when averaging the differences globally, we obtained (for δ = 60) 2.63% or 0.91 mm day −1 in absolute terms.

In both the wind speed and precipitation analyses, increasing the compression factor and using more clusters to represent

the distribution did not necessarily result in higher accuracy. Due to the larger memory requirements at higher compressions

and with achieving such accurate representations for both wind speed and precipitation, distributions with δ = 60 and δ = 80

respectively, we would not recommend using larger compression factors.490

Overall, we have demonstrated the effectiveness of one-pass algorithms on streamed climate data and provide their Python

implementation ready for use in data streaming work flows (Grayson, 2025). These algorithms not only provide accuracy well

within the required limits of climate model variables but also empower users to harness the full potential of high-resolution

data, both in space and time. Indeed, while some of the methods contain small errors (specifically the t-digest) we note that not

harnessing the added value of high-resolution data due to storage limitations will also incur a potentially more significant error.495

Due to the fact that only a few rolling summaries are required to be kept in memory, these statistics become time independent,

allowing users dealing with high-resolution GCMs to select any variables at their native resolution and process them in next

to near model runtime. This eliminates the constraints of relying on pre-defined archives of set climate variables, typically

provided months to years after the models have been run. With the continuing movement to higher resolution, the streaming of
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climate data will become a fundamental paradigm of data processing. This paper showcases the features of one-pass algorithms500

across a range of relevant statistics that can be harnessed to work in the new era of data streaming.
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