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Abstract. Mycorrhizal fungi enhance plant access to nitrogen (N) in nutrient-poor environments like the Arctic tundra by 

depolymerizing N-rich organic compounds into forms available to plants and microbes. As climate change reshapes plant 15 

communities and mycorrhizal associations, shifting dominance from herbaceous species to shrubs, changes in mycorrhizal 

type and plant species dominance may differentially stimulate N cycling. Both dominant and rare species, along with 

mycorrhizal associations, contribute to ecosystem processes and stability, though the specific roles of these components in 

nitrogen cycling and overall ecosystem functioning remain uncertain. We investigated how mycorrhizal associations and plant 

diversity affect gross N mineralization and nitrification rates in an Oroarctic ecosystem using a plant removal experiment, in 20 

situ 15N labelling, and quantification of select nitrification genes. Treatments plots included (1) unmanipulated (Control); or 

the removal of: (2) ectomycorrhizal and ericoid mycorrhizal (EcM/ErM) plants, letting arbuscular mycorrhizal and non-

mycorrhizal (AM/NM) plants dominate; (3) AM/NM plants, letting EcM/ErM plants dominate; (4) low-abundance species 

(Dominant); and (5) high-abundance species (Rare). Gross N mineralization rates were 73 % and 78 % higher in EcM/ErM 

and Dominant, respectively, compared to Control, while AM/NM and Rare showed more moderate increases of 30 % and 46 25 

%. Gross nitrification was also highest in EcM/ErM, with a 26 % increase over Control. Gene abundances did not mirror 

nitrification patterns. Archaeal ammonia oxidizers (AOA), Nitrospira-type nitrite oxidizers (NIS), and comammox clade A 

(ComaA) were consistently more abundant than bacterial ammonia oxidizers (AOB), Nitrobacter-type nitrite oxidizers (NIB), 

and comammox clade B (ComaB), suggesting a stable site-level nitrifier community. Dominant had the lowest gene copy 

numbers overall, except for AOB which was highest. In addition, AOA gene abundance was significantly lower in Dominant 30 

compared to Control, with a marginal reduction observed for NIS. Our findings highlight the key role of EcM/ErM fungi in 

accelerating N cycling in Oroarctic soils, challenging traditional assumptions that N transformation rates are slow in EcM/ErM 

dominated ecosystems. These insights underscore the need to consider mycorrhizal associations and plant community 

composition when predicting tundra ecosystem responses to environmental change. 

https://doi.org/10.5194/egusphere-2025-2179
Preprint. Discussion started: 21 May 2025
c© Author(s) 2025. CC BY 4.0 License.



2 
 

1 Introduction 35 

The availability of soil nutrients plays a pivotal role in shaping tundra plant productivity and the composition of plant 

communities (Chapin et al., 1995; Shaver et al., 2001), as well as their responses to climate change (Aerts, 2009; Riley et al., 

2021; Stow et al., 2004; Sturm et al., 2001). As climate change is particularly pronounced in the Arctic, shifts in plant growth 

and community composition are occurring (Bjorkman et al., 2020; Hollister et al., 2015), including increased plant productivity 

("arctic greening") and shrub expansion ("shrubification") (Bjorkman et al., 2019; Mekonnen et al., 2021; Myers-Smith et al., 40 

2011; Sistla et al., 2013; Tape et al., 2006). Changes in plant community composition contribute to shifts in biodiversity above- 

and below-ground (Mod and Luoto, 2016; Parker et al., 2018, 2021), with mycorrhizal fungi mediating these changes by 

influencing soil microbial community composition and activity, impacting soil carbon (C) content, and nutrient cycling 

((Andresen et al., 2022; Bahram et al., 2020; Eagar et al., 2022; Hawkins et al., 2023; Hobbie and Högberg, 2012; Hobbie and 

Hobbie, 2006; Netherway et al., 2021; Phillips et al., 2013; Read, 1991; Sun et al., 2023; Tedersoo et al., 2020). Thus, changes 45 

in plant identity or functional diversity can alter nitrogen (N) availability through indirect effects on N mineralization, 

nitrification, and other N transformations (Isobe et al., 2018; Robertson and Groffman, 2015). These alterations can feed back 

to plant growth and enhance ecosystem C cycling (Hicks et al., 2020a, 2022; Mekonnen et al., 2021; Parker et al., 2021). 

Therefore, understanding the links between plant community composition, soil microorganisms, and N cycling is vital for 

predicting climate change impacts on tundra ecosystems, yet these interactions remain poorly understood (Dobbert et al., 50 

2022).   

 

Ecological communities are typically composed of a few abundant species and many rarer ones (Gaston, 2011; McGill et al., 

2007). Traditionally, research has focused on the role of dominant species in ecosystem functioning, but both dominant and 

rare species contribute to ecosystem stability and processes (Avolio et al., 2019; Jain et al., 2014; Lyons et al., 2005; Lyons 55 

and Schwartz, 2001; Richardson et al., 2012; Säterberg et al., 2019; Smith and Knapp, 2003). Dominant plant species influence 

primary production, nutrient cycling, and soil microbial composition, due to their high biomass and resource use (Grime, 1998; 

Tedersoo et al., 2020). Their functional traits affect soil N availability by regulating N mineralization and nitrification 

(Clemmensen et al., 2021; Kielland, 1995; Liu et al., 2018; Michelsen et al., 1996; Ramm et al., 2022; Rozmoš et al., 2022; 

Tunlid et al., 2022). Rare species, in contrast, often exhibit higher functional diversity and may fill ecological roles not 60 

occupied by dominant species, facilitating niche differentiation and promoting ecosystem resilience (Dee et al., 2019; Hooper 

et al., 2005; Leuzinger and Rewald, 2021; Mouillot et al., 2013; Soliveres et al., 2016; Tang et al., 2023). While their overall 

biomass contribution is lower, their diverse traits and microbial interactions could play an important role in nutrient 

partitioning. Both dominant and rare species can form mycorrhizal associations, but differences in mycorrhizal types and plant-

microbe interactions may drive variation in N cycling at the community level (Knops et al., 2002; Van der Krift and Berendse, 65 

2001; Moreau et al., 2015, 2019). 
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Arbuscular mycorrhizal (AM) fungi are considered less common in Arctic ecosystems due to low cold tolerance (Kilpeläinen 

et al., 2016; Kytöviita, 2005; Ruotsalainen and Kytöviita, 2004; Wang et al., 2002), while ectomycorrhizal (EcM) and ericoid 

mycorrhizal (ErM) fungi dominate (Michelsen et al., 1998; Soudzilovskaia et al., 2017; Steidinger et al., 2019). Different 70 

mycorrhizal types differ in their influence on N mineralization rates and inorganic N availability (Björk et al., 2007; Phillips 

et al., 2013; Tedersoo et al., 2020). AM fungi facilitate rapid N turnover by promoting inorganic N uptake (Govindarajulu et 

al., 2005; Hodge and Storer, 2015; Savolainen and Kytöviita, 2022), EcM fungi access both organic and inorganic N, leading 

to intermediate N turnover rates  (Hobbie et al., 2009; Kohler et al., 2015; Miyauchi et al., 2020; Orwin et al., 2011; Pellitier 

and Zak, 2018), and ErM fungi specialize in mobilizing N from complex organic compounds, contributing to slower N cycling 75 

(Bending and Read, 1996; Clemmensen et al., 2021, 2024; Fanin et al., 2022; Tybirk et al., 2000; Wurzburger and Hendrick, 

2009). In ecosystems dominated by a single mycorrhizal type, nutrient cycling may become increasingly constrained by that 

symbiosis, leading to homogenized soil N dynamics. For example, EcM fungi effectively access organic-N, stabilizing it in 

less labile forms and reducing N losses, whereas AM fungi promote greater N mobility, potentially increasing N loss (Hobbie 

and Ouimette, 2009).  In contrast, communities composed of less abundant, locally rare species may support different or 80 

complementary N cycling functions compared to those dominated by the most abundant species, potentially enhancing 

functional redundancy and buffering against environmental fluctuations — even when species richness is held constant. To 

understand these dynamics, it is essential to disentangle the effects of plant dominance, species diversity, and mycorrhizal 

associations on N cycling.  

 85 

The aim was to determine how the functional diversity in plant-mycorrhizal associations (AM/NM vs EcM/ErM) and structural 

diversity (dominant vs. rare species) regulate soil N cycling, and which diversity component is the primary driver. To address 

this, we conducted a plant removal experiment and in-situ 15N labelling to determine gross N mineralization and nitrification 

rates, processes central to N availability in soils as they regulate N supply and loss. Additionally, we used quantitative PCR 

(qPCR) to quantify six microbial genes related to nitrification, assessing the genetic potential for this process. Thus, we 90 

hypothesize that (1) gross N mineralization rates will be highest in EcM/ErM-dominated plots, as these fungi are particularly 

efficient at accessing organic N sources, breaking down complex organic compounds, and mobilizing N from organic matter. 

In addition, (2) gross nitrification rates will be highest in AM/NM-dominated plots, since AM fungi and NM plants promote 

rapid N turnover and enhance the activity of nitrifying microorganisms. (3) The higher gross nitrification rates will also 

correspond with greater genetic potential for ammonia- and nitrite oxidation in AM/NM-dominated plots. Finally (4) 95 

mycorrhizal type will have a stronger influence on N processes than plant community structure (i.e. Rare vs Dominant), as 

mycorrhizal fungi directly affect N acquisition and cycling through their symbiotic relationships with plants, whereas the 

influence of plant community structure is more indirect. 
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2 Methods 

2.1 Study site and design 100 

This study was conducted at the Tarfala Research Station in the Tarfala valley of the Kebnekaise Mountains, northern Sweden, 

at elevations ranging from 1098 to 1114 m a.s.l. (Latitudes: 67°54′14.16″N to 67°54′15.16″N, Longitudes: 18°37′23.80″E to 

18°37′29.39″E). The geomorphology of the valley reflects its glacial history, with landforms shaped by retreating ice masses 

and a substrate dominated by rocky debris. The study area is situated near the terminal moraines marking the maximum extent 

of Storglaciären during the Little Ice Age (~1910) (Holmlund, 1987) and is characterized by shallow soils developed on till, 105 

classified as Leptosols and Regosols (Fuchs et al., 2015). Prominent plant species are the graminoids Carex bigelowii, Carex 

nigra, Deschampsia flexuosa, Festuca vivipara, and Juncus trifidus; the deciduous dwarf shrubs Salix polaris and Vaccinium 

uliginosum; the evergreen dwarf shrubs Dryas octopetala and Empetrum nigrum; and the forbs Bistorta vivipara and Silene 

acaulis. The mean annual air temperature from 1995 to 2019 was -2.6 ± 1.8 °C with the coldest month in February (-10.5 ± 

5.5 °C) and the warmest month in July (8.4 ± 3.7 °C) (SMHI 1995-2019; raw data retrieved from www.smhi.se). The summer 110 

mean precipitation is 458 ± 201 mm (Dahlke et al., 2012, Tarfala Research Station 1980-2011; available at 

https://bolin.su.se/data/tarfala/climate.php).  

We established a plant removal experiment in 2016 with one unmanipulated control and four treatments designed to manipulate 

plant community structure: 1) Control, where no plant species were removed; 2) AM/NM, where all plants with EcM or ErM 

associations were removed, leaving only plants with AM associations or no mycorrhizal association (NM); 3) EcM/ErM, where 115 

all plants with AM or NM associations were removed, leaving only plants with EcM or ErM associations; 4) Dominant, where 

rare plant species were removed, leaving the eight most dominant species  (9 rare species removed; Table S1); and 5) Rare, 

where dominant plant species were removed, retaining the eight rarest species (7–11 dominant species removed; Table S1).  

Rare and dominant plant species were determined by reducing species richness to approximately 50 % of the community 

species pool while maintaining a mixed mycorrhizal plant community. Species removal was performed by clipping vegetation 120 

at the soil surface, with treatments maintained from 2016 to 2019 by removing regrowth of undesired species each growing 

season. The treatments were distributed across 32 plots arranged into eight blocks, each containing four plots (one for each 

treatment group, except for Rare and Dominant, which were represented in four blocks each). There were eight replicates for 

the AM/NM-dominant, EcM/ErM-dominant, and control treatments, and four replicates for the Rare and Dominant plant 

community treatments. Each consisted of a smaller survey area (1 m²) to exclude edge effect of the trenching (4 m²) designed 125 

to exclude external mycorrhizal colonization. Trenches were dug around the 4 m² perimeter and lined with 1 μm mesh to a 

depth of 0.3 m, allowing water movement but preventing root and mycorrhizal penetration.  
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2.2 Plot-level plant diversity 

To determine plot-level plant community structure, we conducted two vegetation surveys (pre-clipping, July 2015 and post-130 

clipping, July 2019) using point intercept measurements (Molau and Mølgaard, 1996) on the central 1 m2 quadrats for each 

plot. In addition, all species within the 4 m2 plot not registered by point intercept were noted. We estimated the cover and 

counts of each species to determine species richness. We also calculated the transient changes in community dynamics initiated 

by altered plant interactions and estimated changes in above-ground biomass (Molau, 2010). 

 135 

2.3 Nitrogen dynamics 

Gross soil N dynamics were investigated in the field using the virtual soil core 15N tracing approach (Rütting et al., 2011) and 

a mirror 15N labelling approach, allowing investigation of N transformations in the intact mycorrhizosphere. Within each plot, 

we set up two groups of four injection locations in opposing corners: one corner for 15N-labelled ammonium (NH4
+) and the 

other for 15N-labelled nitrate (NO3
-), to avoid cross-contamination. We conducted the 15N labelling by injecting 15(NH4)2SO4 140 

(Cambridge Isotope Laboratories) to quantify gross N mineralization or K15NO3 (Cambridge Isotope Laboratories) to quantify 

nitrification, both labels with a 15N fraction of 99 %, to a soil depth of 6 cm, both treatments also receiving the unlabelled other 

moiety. There were 11 injection points per location using a template for guidance (Rütting et al., 2011), each point receiving 

1.14 mL of solution containing 15.0 μg NH4-N mL-1 and 4.5 μg NO3-N mL-1, which is equivalent to c.a. 3.8 μg NH4-N g-1 dry 

soil and 1.2 μg NO3-N g-1 dry soil. These amounts were calculated based on soil concentrations measured in tundra soil in the 145 

nearby Latnjajaure Field Station (Björk et al., 2007). We destructively harvested soil cores at 2, 25, 49, and 97 hours after 

labelling, using sharpened PVC tubes (3 cm in diameter) inserted down to 6 cm depth at the four respective locations. 

 

Soil cores were immediately processed at the Tarfala Research Station to extract inorganic N (i.e., NO3
- and NH4

+) following 

initial sieving (mesh size 2 mm). 10 g of field moist soil were extracted using 20 ml of 1 M KCl and placed on a shaker for 60 150 

min at 250 rpm before filtration with Whatman 1 G/F filter paper (11 µm). The extracts were stored frozen at -20°C until 

further analyses. Concentrations and the 15N fraction of NH4
+ were determined from soil KCl extracts using the micro diffusion 

technique (Biasi et al., 2022; Brooks et al., 1989), followed by 15N analysis on an elemental analyzer (Europa EA-GSL, Sercon 

Ltd., UK) coupled to an Isotope Ratio Mass Spectrometer (Sercon 20-22, Sercon Ltd., UK). NO3
- concentrations and the 15N 

fraction in all samples were determined from soil KCl extracts using the SPINMAS technique (Stange et al., 2007). The TN, 155 

TC, C:N ratio, and bulk 15N in soil were measured using the EA-IRMS described above. Dried soil was first ground (Retsch 

MM400, frequency 23.0 1/s, for 2 min) and around 15 mg from each sample was placed into a tin capsule. 
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2.4 Soil characteristics 

Samples for abiotic and biotic soil characteristics were taken from the top 6 cm of soil (organic layer only) to match the soil 160 

depth used during the 15N labelling. Four soil samples (10×10×6 cm 250 cm3 each) were collected from each plot after the 15N 

labelling experiment to avoid destructive sampling within the plot during the experiment. Stones, plant shoots and roots were 

removed from the collected samples immediately after sampling at the Tarfala Research Station, which were then sieved 

through a 2 mm mesh. The four sieved soil samples from each plot were combined and homogenized. Subsamples were 

separated from the homogenized soil for various analyses elsewhere, including pH, gravimetric soil water content (GWC, g/g), 165 

soil organic matter (SOM), and DNA extraction for abundance of microbial communities. Subsamples for DNA extraction 

were stored frozen until further analyses. 

 

GWC was measured by oven-drying 10 g of wet soil at 100 °C for 24 hours. SOM content was determined using the loss-on-

ignition method by heating the soil at 550 °C for 6 hours. Soil pH was measured in water (10 g soil, 1:1 deionized water) and 170 

in 1 M KCl (10 g soil, 1:4). Field measurements of soil temperature at a depth of - 5 cm (Tsoil °C) and soil water content at 0 – 

6 cm (volumetric soil moisture content; VWC) were recorded on four days corresponding to the 15N injection time points. 

These measurements were taken at four locations within each plot using a hand-held thermometer and an ML3 ThetaProbe 

(Delta-T Devices, Cambridge, U.K.), respectively. Bulk density was determined using intact soil cores (5 cm length, 7.2 cm 

diameter, 203.6 cm3 volume), collected by block (N = 8), and oven dried at 100 °C for 24 hours.  175 

 

2.5 DNA extraction and qPCR of the ITS region and 16S rRNA and nitrification-associated genes 

The frozen, sieved soil was freeze-dried and then ground for 2 minutes using a ball mill. The DNA was extracted from 0.25 g 

of the milled soil using the NucleoSpin soil kit (Macherey-Nagel, Duren, Germany), with SL2 buffer with enhancer and 

according to the manufacturer’s protocol. DNA was quantified using the Qubit 2.0 fluorometer (Invitrogen, Thermo Scientific). 180 

qPCR was used to determine the size of total bacterial and fungal communities in the soil by quantifying 16S rRNA gene and 

ITS, respectively. Additionally, nitrification-associated functional genes were quantified, including amoA (encoding ammonia 

monooxygenase from archaeal (AOA) and bacterial (AOB) ammonia oxidizers, and clade A (comaA) and clade B (comaB) 

complete ammonia oxidizers in the Nitrospira genus) and nxrB (encoding nitrite oxidoreductase from either Nitrospira-type 

(NIS) or Nitrobacter-type (NIB) nitrite oxidizing bacteria) (Table S2). Quantification was done using the C1000TM Thermal 185 

Cycler CFX96TM Real-Time System, and CFX ConnectTM Real-Time System (BioRad, CA, USA). All reactions were carried 

out in duplicate with a 15 μL reaction volume containing 0.1 mg/mL BSA, 1x SYBR Green Supermix (BioRad), 0.2-1.0 µM 

of each primer (Table S2), and 6 ng of template DNA. Standard curves were generated for each gene using serial dilutions 

(102-108 copies/μL) of linearized plasmids containing the target genes. The cycling conditions, primer sequences, and 

concentrations for each gene are available in Table S3. The amplifications were validated by melting curve analyses and 190 
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agarose gel electrophoresis. Prior to quantification, potential inhibition of PCR reactions was checked by amplifying a known 

amount of the pGEM-T plasmid (Promega, Madison, WI, USA) using plasmid specific M13 primers and addition of soil DNA 

or non-template controls for each sample. No inhibition was detected with the amount of DNA used. Gene copy numbers were 

adjusted for the amount and concentration of extracted DNA and normalized per gram of dry soil.  

 195 

2.6 Data analysis 

All statistical analyses were conducted in R (R Core Team, 2024) with RStudio interface (Posit team, 2024), except for the 

Isotope tracing model described below. R packages used included tidyverse (v2.0.0, Wickham et al., 2019), rstatix (v0.7.2, 

(Kassambara, 2023b), knitr (v1.45, (Xie, 2023), kableExtra (v1.4.0, (Zhu, 2024), ggpubr (v0.6.0, (Kassambara, 2023a), sjPlot 

(v2.8.15, Lüdecke, 2023). Additional R packages are described within the methods below. 200 

 

2.6.1 Vegetation diversity 

Vegetation data from both surveys were analyzed using Correspondence Analysis (CA) to explore the relationships between 

time and treatment. One EcM/ErM plot was removed from the analysis because it had a vascular plant species richness of zero 

based on the point-framing survey in 2019. This plot had 88 % bryophyte cover and although Salix herbacea, S. polaris, and 205 

Empetrum nigrum were still present there were no direct hits from the point-framing survey, indicating a presence of less than 

1 % coverage. 

2.6.2 Isotope (15N) tracing model 

Process-specific gross N transformation rates were quantified using the 15N tracing model Ntrace (Müller et al., 2007; Rütting 

and Müller, 2007). We used a model setup, including three N pools (organic N, NH4
+ and NO3

-) and four N transformation 210 

processes: mineralization of organic N (MNorg), immobilization of NH4
+ and NO3

- (INH4 and INO3) and NH4
+ oxidation (ONH4, 

i.e. nitrification). The N transformations were described by first-order kinetics, except for MNorg which followed zero-order 

kinetics. The kinetic parameters of the N transformations were approximated numerically for each treatment separately with 

Monte Carlo sampling through a random walk aiming to minimize a misfit function (quadratic weighted error) between the 

modelled and observed values. Model inputs were mean values and standard deviations of NH4
+ and NO3

- content and their 215 

respective 15N abundances. The initial 15N content of the organic N pool was not measured at the plots and was instead assumed 

to be at natural abundance (0.366 %). Iterative approximation of the N cycle rates creates normally distributed probability 

density functions, for which the mean values and standard deviations were calculated (Müller et al., 2007). For pathways 

described by first-order kinetics, gross N rates were calculated as the product of the kinetic factor and substrate content. Ntrace 

and the optimization algorithm were set up in Matlab version R2023b and Simulink version 23.2 (The MathWorks Inc.). Rates 220 

are reported per gram of C to account for differences in organic matter content across soils and to facilitate better comparison. 
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The Ntrace provides robust estimates of gross N transformation rates but was here applied to treatment averages, hence did not 

allow investigation of potential block effects. To do so, we additionally quantified gross N mineralization and nitrification for 

each plot based on the isotope pool dilution (IPD) principle and the analytical tracing model by (Kirkham and Bartholomew, 

1954) using the first two timesteps of the 15N tracing experiment. All gross N transformation rates are normalized for the soil 225 

C content. To assess potential block effects on gross N mineralization and nitrification rates, we fitted generalized linear models 

(GLMs) with Block as a fixed effect using the glmmTMB package (v1.1.8, Brooks et al., 2017). Given the right-skewed 

distribution of the data, a zero-inflated Gamma distribution with a log link function was used for mineralization rates, while a 

standard Gamma distribution was applied for nitrification rates. Model significance was assessed using Type II Wald chi-

square tests. 230 

 

2.6.3 Soil characteristics and microbial genes 

To analyse the impacts of mycorrhizal status and vegetation composition on soil characteristics and microbial genes, we fitted 

Generalized Linear Mixed Models (GLMMs) with glmmTMB (v1.1.8, (Brooks et al., 2017). Each model included Treatment 

as a fixed effect and Block as a random effect. Given that Block showed significant effects for several response variables, 235 

additional GLMs were fitted with Block as a fixed effect to explore its specific influence. These results are presented in the 

supplementary material for completeness, though Block was not originally intended as a primary focus of the experimental 

design. We validated models using the DHARMa package (v0.4.6, (Hartig, 2022). Pairwise comparisons between treatments 

were conducted with emmeans (v1.10.0, (Lenth, 2024). 

 240 

We conducted paired samples Wilcoxon signed-rank tests with the wilcox.test function within the stats package (R Core Team, 

2024) to assess differences in log-transformed gene abundances between the sample groups ITS and 16S rRNA, AOA and 

AOB, ComaA and ComaB, as well as NIB and NIS. 

 

We utilized the corr.test function within the psych package (v2.4.1, (Revelle, 2024) to conduct correlation analyses to explore 245 

the relationships between gene abundances and environmental variables. We calculated Spearman rank-order correlation 

coefficients to quantify the strength and direction of these relationships. To address the issue of multiple testing and control 

the family-wise error rate, we applied a Holm correction. We categorized correlation coefficients based on their strength: weak 

(0 < |r| < 0.4), moderate (0.4 < |r| < 0.7), and strong (|r| > 0.7). 

 250 

Principal Component Analysis (PCA) was employed for dimensionality reduction. The first three Principal Components (PCs) 

were retained, and ANOVAs were performed on them, incorporating Treatment and Block as fixed effects. The ANOVA 

outputs provided adjusted p-values, which were further examined using Tukey tests to identify significant differences between 

treatment groups and blocks. 

https://doi.org/10.5194/egusphere-2025-2179
Preprint. Discussion started: 21 May 2025
c© Author(s) 2025. CC BY 4.0 License.



9 
 

 255 

3 Results 

3.1 Vegetation diversity treatment effect 

 

The treatments clearly shifted the plant community in three directions within the ordination space from its original structure 

in 2015 (Fig. 1). The AM/NM community and the Dominant community clustered together, whereas the EcM/ErM community 260 

and the Rare community formed their own distinct clusters after clipping treatment. The control plots in 2019 remained similar 

to the plant communities recorded in 2015 before the experiment was established.  

 

 
Figure 1: Changes in plant communities over the course of the experiment. Mean values (± 85 % confidence interval 265 
corresponding to an α= 0.05 test; see (Payton et al., 2000, 2003) of sample scores from the correspondence analysis (CA), 
comparing the abundances of plant species before treatment in 2015 and four years after treatment in 2019. The 
eigenvalues are 0.499 for Axis 1 and 0.469 for Axis 2. Axis 1 explains 10.68 % of the total variance, and Axis 2 explains 
10.04 %, together accounting for 20.72 % of the total variance. Treatments: Ctrl = control; AM/NM = plants with 
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arbuscular mycorrhizal association or no mycorrhizal association; EcM/ErM = plants with ectomycorrhizal and ericoid 270 
mycorrhizal associations; Dominant = rare plant species removed allowing the eight most dominant plant species to grow 
in the plots; and Rare = dominant species removed keeping the eight rarest plant species. 

 

3.2 Soil characteristics 

During the labelling period, VWC was significantly higher in EcM/ErM-dominated plots compared to the control (z = 2.19, p 275 

= 0.029). Tsoil was significantly lower in Dominant plots relative to the control (z = -2.44, p = 0.015) and marginally lower in 

EcM/ErM plots relative to the control (z = -1.88, p = 0.06). Pairwise comparisons showed that Tsoil in AM/NM was significantly 

higher than EcM/ErM (estimate = 0.02, SE = 0.006, p = 0.007) and Dominant (estimate = 0.03, SE = 0.008, p = 0.003). SOM 

was significantly lower in AM/NM-dominated plots compared to control (z = -2.35, p = 0.019). No other significant differences 

were found for the remaining soil characteristics (Table 1, Table S4).  280 

 
Table 1: Soil properties at the Tarfala study site (Sweden). Variables: soil moisture (VWC), soil temperature (Tsoil), 
laboratory gravimetric soil water content (GWC), soil organic matter (SOM), pH, C:N ratio, TN.  Values represent mean 
± standard error (N = 32). VWC and Tsoil are averaged values taken over four days of measurements, while all other 
properties are based on one measurement per soil sample collected from each plot. Treatments: only ecto- and ericoid 285 
mycorrhiza plant associations present (EcM/ErM), only arbuscular and non-mycorrhiza associations present (AM/NM); 
removal of dominant plant species (Rare); removal of rare plant species (Dominant). Significant differences from control 
are bolded (* = p<0.05, # = p < 0.1) based on general linear mixed-effects models (GLMMs) (Table S4). 

Treatment 
 

n 
VWC  
(%) Tsoil (oC) 

GWC 
(g/g) 

SOM  
(%) pH C/N 

TN  
(%) 

Control 8 26.0±1.6  10.7±0.1  55.7±1.9  37.2±2.5  4.9±0.1  15.3±0.5 1.1±0.2  

AM/NM 8 26.6±1.1  10.9±0.1 52.0±2.3 29.9±2.7* 4.9±0.1 15.6±0.6 0.9±0.1 

EcM/ErM 8 29.8±1.9* 10.4±0.2# 54.9±1.4 33.7±1.6 5.0±0.1 14.2±0.6 1.4±0.4 

Dominant 4 27.4±2.8 10.4±0.2* 57.6±4.4 38.1±5.9 5.0±0.0 16.7±0.7 0.9±0.1 

Rare 4 31.4±2.8 10.5±0.3 53.8±1.8 31.4±3.6 5.0±0.1 14.9±0.7 1.0±0.2 

Bulk density (g cm-3) was measured by block, not by treatment: A) 0.18, B) 0.22, C) 0.21, D) 0.22, E) 1.01, F) 0.37, G) 0.41, H) 0.36. 
Natural abundance δ15N was measured by block, not by treatment: A) 0.95, B) 1.76, C) -0.08, D) 0.92, E) 2.62, F) 2.16 290 
 

3.3 Gross nitrogen dynamics 

Compared to the control, all treatments showed significantly higher gross N mineralization rates (Fig. 2a). EcM/ErM and 

Dominant showed the largest increases, at 73 % and 78 % above the Control, respectively, while AM/NM and Rare had more 

moderate increases of 30 % and 46 %. Gross nitrification rates were 1-2 orders of magnitude lower than gross N mineralization 295 

rates (Fig. 2b). Significant differences in gross nitrification rates were also observed, with EcM/ErM showing a 26 % increase, 
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while Rare, AM/NM, and Dominant exhibited reductions of 32 %, 46 %, and 49 %, respectively, compared to the Control (Fig. 

2b). 

Average gross N mineralization and nitrification rates, calculated using the IPD approach, showed a similar pattern to those 

obtained through Ntrace (Table S5). However, the IPD based rates had much higher variability. In some instances, we even 300 

observed implausible negative rates. Block effects on gross N transformation rates were not statistically significant for 

mineralization (X2 (7) = 9.19, p = 0.24), but marginally significant for nitrification (X2 (7) = 13.08, p = 0.07). 

 

 
Figure 2: Gross N mineralization and nitrification rates (mean and 85 % confidence interval).  Rates were quantified by 305 
the Ntrace model with different manipulated vegetation (Control = no manipulation; AM/NM = plants with arbuscular 
mycorrhizal association or no mycorrhizal association; EcM/ErM = plants with ectomycorrhizal and ericoid mycorrhizal 
associations; Dominant = rare plant species removed allowing the eight most dominant plant species to grow in the plots; 
and Rare = dominant species removed keeping the eight rarest plant species). Different lowercase letters above the bars 
indicate significant differences based on whether the 85 % confidence intervals overlap.  310 

 

3.4 Abundance of bacteria and fungi 

The bacterial 16S rRNA gene copy numbers were consistently higher than fungal ITS rRNA gene copy numbers across all 

treatments (EcM/ErM, AM/NM, Rare, Dominant), ranging from 2.07 x 109 to 2.75 x 109 and 1.05 x 108 to 1.68 x 108 copies 

g-1 dry soil respectively (V = 528, p < 0.001, n = 32). In the AM/NM, fungal abundances were marginally lower (z = -1.67, p 315 

= 0.094) and the ITS:16S rRNA gene copy ratio were lower (z = -2.13, p = 0.033) compared to the Control (Fig. 3a). No other 

treatments significantly affected the bacterial or fungal abundance (Table S6, S7) or the ITS:16S ratio (Fig. 3a, Table S8, S9). 
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 320 

Figure 3: Soil gene abundance ratios in response to plant removal treatment. Gene abundance ratios for A) fungi (ITS) vs 
bacteria (16S rRNA gene); B) Archaeal ammonia oxidizer (AOA) vs bacterial ammonia oxidizer (AOB); C) comammox 
bacteria, clade ComaA vs comammox clade ComaB; and D) nitrite-oxidizing Nitropira (NIS) vs Nitrospira (NIB). 
Treatments: no manipulation = Control; removal of plants with ecto and ericoid mycorrhiza associations = AM/NM; 
removal of plants with arbuscular mycorrhiza & no mycorrhiza associations = EcM/ErM; removal of rare plant species = 325 
Dominant; removal of dominant plant species = Rare. Symbols above the boxplots denote significant differences for each 
group relative to a control group as determined through Generalized Linear Mixed Models (GLMMs) (* < 0.05) (Table 
S9). 

 

3.5 Nitrifier gene abundance 330 

We observed the most notable variations in nitrification gene copy numbers between functional groups capable of the same 

transformation step in nitrification. Gene abundances exhibited distinct differences between functional group pairs: AOA > 

AOB (V = 527, p < 0.001, n = 32); NIS > NIB (V = 0, p < 0.001, n = 32); and ComaA > ComaB (V = 528, p < 0.001, n = 32). 

Of the six genes, amoA in ComaA and nxrB NIS, both representing the bacterial genus Nitrospira, were consistently the most 

abundant genes (Table S10). 335 

 

Overall, gene abundances were minimally affected by treatment, except for Dominant treatment having lower AOA abundance 

(z = -2.66, p = 0.008; Fig. 4a), and marginally lower NIS abundance (z = -1.89, p = 0.058; Fig. 4f) compared to the control 

(Table S11). Gene copy abundance ratios were unaffected by treatment (Fig 3b-d, Table S9).  

 340 
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Figure 4: Gene abundances representing six functional groups involved in nitrification in response to plant removal treatment. A) 
Ammonia-oxidizing archaea (AOA), B) ammonia-oxidizing bacteria (AOB), C) complete ammonia oxidizers (comammox) clade A 
(comaA), D) complete ammonia oxidizers (comammox) clade B (comaB), E) nitrite-oxidizing Nitrobacter (NIB), and F) nitrite-
oxidizing Nitrospira (NIS). Treatments: no manipulation (Control); removal of plants with ecto and ericoid mycorrhiza associations 345 
= AM/NM; removal of plants with arbuscular mycorrhiza & no mycorrhiza associations = EcM/ErM; removal of rare plant species 
= Dominant; removal of dominant plant species = Rare. Symbols above the boxplots denote significant differences for each group 
relative to a control group as determined through Generalized Linear Mixed Models (GLMMs) (** < 0.01, # < 0.1) (Table S11).  
 

3.6 Relationships between gene abundances, vegetation, and edaphic factors 350 

We found no significant correlations between gene abundances and Simpson’s diversity index of plants, VWC, GWC, Tsoil, 

SOM, pH, TN, C/N, and BD after adjusting for multiple testing (Table S12). However, we observed a strong positive 

correlations between abundance of 16S rRNA genes and ITS (r = 0.73, p < 0.01), AOB (r = 0.73, p < 0.01), ComaA (r = 0.77, 

p < 0.01), NIB (r = 0.75, p < 0.01),  AOA and NIS (r = 0.81, adj.p < 0.01), ComaA and ComaB (r = 0.72, p < 0.01), and 

moderate positive correlations between 16S rRNA genes and ComaB (r = 0.67, adj.p < 0.01), ITS and AOB (r = 0.69, p < 355 

0.01), AOB and ComaA (r = 0.63, p = 0.02), ComaA and NIB (r = 0.63, adj.p = 0.02), and ComaB and NIB (r = 0.60, p = 

0.04) gene abundances. We also observed moderate positive correlations between Simpson’s diversity index of plants and 

VWC (r = 0.63, adj.p = 0.02), VWC and BD (r = 0.60, adj.p = 0.04), and BD and elevation (r = 0.60, adj.p = 0.04). There was 

a marginally moderate negative correlation between Tsoil and BD (r = -0.58, adj.p = 0.08). 

When considering the combined effects of vegetation diversity, soil characteristics, and the abundance of bacterial, fungal, and 360 

nitrifier genes, the first three principal components accounted for 58.2 % of the total variance, with PC1, PC2, and PC3 
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explaining 25.9 %, 18.5 %, and 13.7 %, respectively (Fig. S1, S2). The loadings for each component indicate that no single 

variable drives the variance (Table S13). The strongest positive loadings on PC2 were vegetation diversity, VWC, AOA 

abundance, and NIS abundance, while the strongest negative loading was C/N ratio. For PC3, Tsoil was the strongest negative 

loading, and elevation, VWC, GWC, and BD were the strongest positive loadings. However, some variables show relatively 365 

stronger contributions to certain components. For PC1, neither Treatment (F(4,20) = 0.81, p = 0.53) nor Block (F(7,20) = 1.28, p 

= 0.31) had a significant effect on the PC1 scores. For PC2, Treatment showed a significant effect on PC2 scores (F(4,20) = 3.40, 

p = 0.028), while Block was not significant (F(7,20) = 1.52, p = 0.22). Tukey’s test indicated a significant difference between 

the EcM/ErM and Dominant (adj.p = 0.015), and a notable difference between Rare and Dominant (adj.p = 0.079) treatment 

groups. For PC3, Treatment (F(4,20) = 3.71, p = 0.02) and Block (F(7,20) = 12.01, p = 0.00) showed a significant effect on PC3 370 

scores. Tukey’s test indicated a significant difference between the EcM/ErM and AM/NM (p = 0.039), and between Rare and 

AM/NM treatment groups (p = 0.038). Tukey’s test also showed significant differences between Blocks with Blocks A-D 

showing negative PC scores and Blocks E-H showing positive scores (Fig. S2). Elevation, which increased from Block A to 

H (Table S14, Fig. S3a), influenced multiple properties despite the subtle 15-meter gradient. The proportional cover of 

EcM/ErM plots decreased from Block A-G but deviated in Block H, where the cover resembled that of Blocks B-D. 375 

Additionally, Blocks A-D were drier than Blocks E-F, and soil temperature decreased with elevation. 

 

4 Discussion 

4.1 EcM/ErM communities enhance both gross mineralization and nitrification in a conservative tundra N cycle 

As hypothesized, we found the highest gross N mineralization rates in the EcM/ErM treatment, but unexpectedly, the treatment 380 

with only dominant species in the plant communities also exhibited high rates. Notably, all treatments showed elevated 

mineralization compared to the unmanipulated control. By contrast, our hypothesis was not supported for gross nitrification. 

The EcM/ErM treatment was the only one showing higher nitrification rates compared to control, while all other treatments 

exhibited decreased rates. A previous study in a hemiboreal forest found that the presence of EcM increased gross N 

mineralization threefold, while gross nitrification remained largely unaffected (Holz et al., 2016). EcM-dominated ecosystems 385 

are commonly assumed to cycle N more slowly because EcM fungi promote organic N retention and decomposition of more 

recalcitrant substrates, whereas AM-dominated ecosystems exhibit faster N cycling due to greater reliance on inorganic N 

uptake and relatively fast N mineralization rates  (Averill et al., 2019). However, our small-scale experimental study does not 

support this hypothesis, as we found significantly higher gross N cycling in the presence of EcM/ErM compared to the plots 

with AM/NM. This is consistent with a recent meta-analysis on rhizosphere effects on gross N mineralization (Gan et al., 390 

2022), demonstrating that EcM-associated plant species enhanced gross N mineralization more than AM-associated species.  

EcM/ErM mycorrhizal treatments circulated N faster than the other treatments, also indicated by the lower gross 

mineralization-to-nitrification ratio in the EcM/ErM mycorrhizal treatments (53 for EcM/ErM mycorrhizal treatments vs. 92, 
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81, and 134 for AM/NM and the diversity treatments). According to the mass ratio hypothesis, the plant functional traits and 

relative abundances of dominant species within a community are highly influential for ecosystem processes (Grime, 1998). 395 

Our study partly supports the mass ratio hypothesis by demonstrating that mycorrhizal type, particularly EcM/ErM, can be 

regarded as a key functional plant trait influencing N cycling. However, we found that dominant species were not necessarily 

associated with faster or more open N cycling overall, despite high mineralization rates. The high gross mineralization-to-

nitrification ratio (134) in the Dominant treatment suggests a more conservative, ammonium-driven N cycle. This may reflect 

competitive dynamics, where dominant species more effectively acquire NH4
+, thereby reducing substrate availability for 400 

nitrifiers. In this way, dominant species could exert a strong influence on the N cycle by both enhancing mineralization and 

constraining nitrification, resulting in a faster but tighter cycle that favours internal N recycling. By contrast, rare species 

communities exhibited lower mineralization but relatively higher nitrification (gross mineralization-to-nitrification ratio of 

81), potentially indicating a more open N cycle and increased risk of N losses via leaching or gaseous pathways. These 

differences may arise from functional similarity and resource monopolization in dominant communities (Eisenhauer et al., 405 

2023), versus greater functional complementarity and microbial interactions in rare communities (Niklaus et al., 2006). Thus, 

our findings suggest that mycorrhizal status, particularly EcM/ErM associations, plays a more significant role in shaping gross 

N cycling dynamics than species dominance alone. 

 

The observed increase in gross N mineralization in all manipulation treatments compared to control could be due to the 410 

increased carbon input from decaying roots of plants that were removed by clipping. Although treatments were initiated four 

years before our study, clipping also occurred during the growing season leading up to it. After clipping, roots remain in the 

soil and decompose, triggering a priming effect on the microbial community, which increases N mineralization and 

rhizodeposition (Bengtson et al., 2012; Dijkstra et al., 2013). Early-stage decomposition generally progresses the fastest due 

to the rapid loss of soluble carbon (Aber et al., 1990). However, root decay rates significantly decline in the second year 415 

compared to the first (McLaren et al., 2017). Thus, the observed gross N mineralization rates are likely slightly elevated, which 

suggests that the gross N mineralization rates are affected by the experimental manipulation.  However, the significantly higher 

mineralization rates in the Dominant treatment, despite its similar community composition to the AM/NM, indicate that species 

identity and associated functions in inherent plant species drive the pattern we observe and play an important role in shaping 

nitrogen cycling dynamics. 420 

 

Moreover, we found that gross N mineralization rates were 1-2 orders of magnitude faster than the gross nitrification rate, and 

the ratio of gross nitrification to NH4
+ immobilization was low. This is a strong indicator of a conservative N cycle with 

minimal N losses to the environment, which is typical in N-limited ecosystems (Schimel and Bennett, 2004; Tietema and 

Wessel, 1992).  Nitrogen limitation is further supported by our δ15N data for SOM. The δ15N values of SOM depend mainly 425 

on external N sources and ecosystem N losses. In N-rich ecosystems with high denitrification, N with low δ15N is lost, resulting 

in higher soil δ15N values (Bai and Houlton, 2009). Conversely, in N-limited ecosystems, the primary input is via biological 
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N fixation, which has minimal fractionation, resulting in soil δ15N values close to 0 (Amundson et al., 2003), as we observe. 

Few studies have investigated gross N cycling rates in situ in tundra ecosystems (Ramm et al., 2022), but our gross N 

mineralization rates in the control plots (5.0 ± 0.3 µmol g-1 C d-1) is similar to in situ rates obtained in other low Arctic and 430 

oroarctic ecosystems (Buckeridge et al., 2010; Gil et al., 2022; Paré and Bedard-Haughn, 2012). Rates on in situ gross 

nitrification is even more scarce for tundra ecosystems. The global average gross nitrification rate in mineral soils has been 

estimated to 0.56 µmol g-1 C d-1 (Elrys et al., 2021), whereas in permafrost mineral soils it is about half this rate, 0.27 µmol g-

1 C d-1 (Ramm et al., 2022). Our control plot nitrification rates are lower (0.13 ± 0.01 µmol g-1 C d-1), and also in the lower end 

of what been observed in alpine grasslands, 0.16 and 0.27 µmol g-1 C d-1  (Jin et al., 2023; Shaw and Harte, 2001).  High soil 435 

C content (> 5 %) can decouple N mineralization and nitrification (Gill et al., 2023) by increasing heterotrophic N demand 

and intensifying competition for ammonium between heterotrophs and autotrophs (Booth et al., 2005; Keiser et al., 2016; Silva 

et al., 2005). Hence, our gross rates suggest that N availability in the Fennoscandian oroarctic tundra is low and low enough 

for the ecosystem to operate with a conservative N cycle. This leads to reduced N losses and further reinforces that N is a 

limiting factor controlling ecosystem productivity. 440 

 

4.2 Distinct soil nitrifier community within an otherwise stable microbial community 

Despite the distinct roles of mycorrhizal fungi in N cycling (Castaño et al., 2023; Hobbie and Högberg, 2012; Tedersoo et al., 

2020), the AM/NM and EcM/ErM plots did not differ in N-cycling gene abundances. However, altering plant composition 

revealed differences. Prior studies show AM-dominated soils contain more inorganic N and up to five times more N-cycling 445 

gene copies than EcM soils ((Mushinski et al., 2021; Zhang et al., 2022), while EcM is linked to greater gross N mineralization 

but lower nitrification rates than AM (Seyfried et al., 2023). Our Dominant community plots had lower abundance of AOA 

and NIS functional groups, coinciding with reduced gross nitrification rates, likely because plants outcompete nitrifiers for 

NH4
+ (Hayashi et al., 2016) or from decreased microbial reliance on NH4

+ (Hobbie and Hobbie, 2006; Schimel and Chapin, 

1996). In Rare community plots, nitrification gene abundances were comparable to Control plots despite lower gross 450 

nitrification rates. Since plant species richness was similar across Dominant and Rare treatments, our results suggest that 

dominant species traits may drive ecosystem function, echoing findings in the ecological literature (Grime, 1998; MacGillivray 

et al., 1995). Interestingly, these traits seem to differ or be suppressed in the AM/NM community, which showed a similar 

plant composition to Dominant plots. Thus, the presence of EcM/ErM plants in an AM/NM-dominated community, even as a 

minor component, can shift how plant community traits influence N dynamics in Arctic soils. 455 

There were limited treatment effects on the abundance of nitrification genes, and bacterial and fungal communities, except in 

the AM/NM community, which showed reduced fungal abundance. This reduction led to a significantly lower ITS:16S rRNA 

gene ratio compared to the Control. Although Arctic soils contain a high abundance of AM fungi, they are typically dominated 

by EcM/ErM fungi (Brachmann et al., 2025), likely explaining the decrease in ITS:16S rRNA gene in the AM/NM community.  

https://doi.org/10.5194/egusphere-2025-2179
Preprint. Discussion started: 21 May 2025
c© Author(s) 2025. CC BY 4.0 License.



17 
 

Despite the limited treatment effects, distinct communities for ammonia oxidation and nitrite oxidation emerged. For ammonia 460 

oxidation, AOA was more abundant than AOB, consistent with findings from other Arctic soils (Alves et al., 2013; Banerjee 

et al., 2011; Lamb et al., 2011). AOA, with their flexible ammonia requirements  (Verhamme et al., 2011), often dominate in 

low-N (Di et al., 2010; Erguder et al., 2009) and acidic soils (Gubry-Rangin et al., 2010; Prosser and Nicol, 2012). Their 

metabolic and physiological versatility (Alves et al., 2019), along with cold-tolerance genes (Pessi et al., 2022), highlights 

their important role in N cycling in Arctic soils. Further differentiation was observed among comammox clades (ComaA and 465 

ComaB), with ComaA being more abundant. Although comammox is underexplored in Arctic soils (Guo et al., 2024), studies 

from coastal Antarctica indicate clade B dominates nitrification there (Han et al., 2024). Biochemical differences, such as 

hydrogen oxidation capabilities (Han et al., 2024; Palomo et al., 2018), may contribute to niche specialization. Arctic soils, 

experiencing periodic anoxia during thawing, likely favour ComaA due to its adaptation to fluctuating oxygen conditions, 

including its ability to switch metabolic pathways and efficiently manage oxygen consumption through hydrogen oxidation. 470 

Among nitrite oxidizers, NIS was more abundant than NIB. NIS thrives under low-nitrite conditions, where its periplasmic 

localization provides a competitive advantage (Nowka et al., 2015). However, the periplasmic location also makes NIS more 

sensitive to environmental fluctuations (Wilks and Slonczewski, 2007), whereas NIB, with its cytoplasmic NXR complex, can 

outcompete NIS under less stable conditions and at higher nitrite concentrations (Bartosch et al., 2002; Taylor and Mellbye, 

2022).  Our results show a distinct nitrifier community and suggest that Arctic soils favour a more resource-efficient, yet 475 

environmentally responsive, ammonia and nitrite oxidation strategy, supporting our findings of a conservative N cycle. 

Moreover, we observed correlations between nitrification genes (Table S12), including a strong positive correlation between 

AOA and NIS, suggesting potential synergistic interactions (Jones and Hallin, 2019; Ke et al., 2013; Stempfhuber et al., 2016) 

within the microbial community. This reinforces the idea that N cycling in these soils is structured by microbial traits and 

environmental pressures rather than competitive interaction with plants and mycorrhizal fungi. 480 

 

4.3 Mismatch between gene abundances and in-situ activity 

We found a mismatch between genetic potential for nitrification and in situ activity (gross nitrification rates) in the mycorrhizal 

manipulated plots. While higher gene abundances sometimes correlate with nitrification potential and rates (Ke et al., 2013; 

Laffite et al., 2020; Ribbons et al., 2016; Rocca et al., 2015), similar inconsistencies as in our study have been observed in 485 

high-Arctic soils, where the abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) do not 

always correlate with ammonia oxidation potential (Hayashi et al., 2016). Thus, gene abundance alone does not necessarily 

predict nitrification rates, as environmental factors (Avrahami and Conrad, 2003; Hicks et al., 2020b; Hu et al., 2014; Li et al., 

2020a; Oshiki et al., 2016; Rousk et al., 2010; Stempfhuber et al., 2016; Taylor and Mellbye, 2022; Wright and Lehtovirta-

Morley, 2023), and competition  (Huang et al., 2024; Jung et al., 2022; Yang et al., 2022) likely play an interacting role. 490 

Additionally, our gene targets did not encompass alternative N sources, for example nitrogen fixation (Castaño et al., 2023) or 

the full nitrification potential of the soil. For example, Nitrotoga, a cold-adapted genus of nitrite oxidizing bacteria (NOB) 
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(Alawi et al., 2007), competes with our targeted groups of NOB (NIB and NIS) (Alawi et al., 2009; Karkman et al., 2011; 

Nowka et al., 2015), but was not considered in our study. 

 495 

4.4 Limited impact of environmental factors 

Overall, neither mycorrhizal type nor plant species richness treatments had a strong influence on soil properties, nor did soil 

properties affect nitrification gene abundances. This result was unexpected, as above- and below-ground processes are often 

considered interconnected (Wardle et al., 2004).  Changes in mycorrhizal type and vegetation typically influence soil properties 

(Netherway et al., 2021; Welker et al., 2024; Wurzburger and Brookshire, 2017), and shifts in soil conditions, management 500 

practices, or environmental conditions can affect N dynamics (Björk et al., 2007; Li et al., 2020b) and nitrification gene 

abundances (Zhan et al., 2023). However, vegetation is not always the primary driver of N dynamics; other environmental 

factors, like soil moisture, can play a more important role (Fisk et al., 1998). Recent studies suggest that below-ground 

communities and functions can resist changes in vegetation cover and diversity (Fanin et al., 2019; Kirchhoff et al., 2024). 

Consistent with this, we found no clear environmental drivers of gene abundance (Table S12). However, we observed 505 

relationships among environmental factors: vegetation diversity was positively correlated with VWC measured during the 

week of the labelling, while soil bulk density was positively related to elevation and VWC but negatively related to soil 

temperature. These relationships may be temporally dynamic, as soil moisture can strongly influence N transformation rates 

earlier in the growing season, with its effect diminishing later in the season (Steltzer and Bowman, 1998). Notably, our soil 

samples were collected during the late growing season. When analyzing vegetation diversity, soil characteristics, and gene 510 

abundances together, clear treatment differences emerged. Differences were observed between EcM/ErM and Dominant, and 

to a lesser extent between Dominant and Rare, driven by vegetation diversity, VWC, AOA and NIS abundances, and C:N 

ratio. Differences between AM/NM and EcM/ErM, and AM/NM and Rare were driven by soil temperature, elevation, VWC, 

GWC, and soil bulk density. Block effects also emerged as a key factor. There were distinct and subtle environmental gradients 

represented in elevation change (over a short 15-meter gradient), vegetation cover, and soil characteristics (Table S14, Fig. 515 

S3a,b). Similar block effects were observed in another plant removal study involving plant-mycorrhizal associations (Kirchhoff 

et al., 2024) even after two years of treatment. Notably, our study spanned four years, further highlighting the persistence of 

these spatial influences. 

 

5 Conclusions 520 

Our study reveals that EcM/ErM mycorrhizal associations significantly enhance N cycling in Oroarctic tundra, challenging 

the conventional view that EcM-dominated ecosystems cycle N more slowly. Elevated gross N mineralization rates in 

EcM/ErM plots suggest that these fungi are more efficient at accessing and mobilizing N from organic matter. Despite stable 
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microbial communities, the AM/NM plots showed reduced fungal abundance, reflecting the dominance of EcM/ErM fungi in 

Arctic soils. Distinct communities for ammonia and nitrite oxidation emerged, with AOA being more abundant than AOB and 525 

NIS more abundant than NIB. This supports a resource-efficient, yet environmentally responsive, N cycling strategy in these 

soils. However, a mismatch between gene abundances and nitrification rates suggests that environmental factors and biological 

competition play significant roles. Altering plant diversity revealed differences in nitrification gene abundances, with dominant 

plots showing lower AOA and NIS gene abundances, indicating that dominant plant species may suppress or outcompete 

nitrifiers. Our findings emphasize the importance of EcM/ErM in N cycling and provide a deeper understanding of ecosystem 530 

processes in tundra environments. Future research should focus on long-term experiments and monitoring to better understand 

how changing plant diversity and mycorrhizal associations under varying climatic conditions affect ecosystem functioning. 
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