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Abstract. Water cycle reanalyses, generated by integrating observations into hydrological and land surface models, provide

long-term and consistent estimates of key water cycle components. Reanalyses are essential to understand hydrological vari-

ability, extreme events such as droughts and floods, and to improve water resource management. Over the past two decades, the

assimilation of terrestrial water storage anomaly data from the GRACE and GRACE Follow-On (GRACE/-FO) missions has5

significantly enhanced these reanalyses, as GRACE/-FO observations uniquely constrain total water storage variability across

all terrestrial compartments. Incorporating GRACE/-FO data has led to major advances in representing trends in key hydrolog-

ical variables, climate-driven changes in the water cycle, and anthropogenic influences such as irrigation-induced groundwater

depletion – factors often poorly captured in models. However, challenges remain, particularly in resolving mismatches in spa-

tial and temporal resolution between GRACE/-FO observations and high-resolution models, and there is no consensus yet on10

the optimal approach for assimilating GRACE/-FO data. In light of the upcoming launches of next-generation gravity missions

and the development of increasingly sophisticated Earth system modeling frameworks, it is an opportune time to compile the

recommendations of GRACE/-FO data assimilation studies to date, in an attempt to converge to best practices. This review

synthesizes past achievements, critically examines unresolved challenges, and explores future directions for advancing wa-

ter cycle reanalyses using satellite gravimetry observations through improved assimilation strategies, machine learning, and15

near-real-time intake of satellite data.

1

https://doi.org/10.5194/egusphere-2025-2058
Preprint. Discussion started: 27 May 2025
c© Author(s) 2025. CC BY 4.0 License.



1 Introduction

The distribution of water on Earth shapes the daily lives of individuals and societies and is, in turn, influenced by human activ-

ities. Quantifying and monitoring water resources is critical to ensuring water availability for human consumption, supporting

agriculture, predicting natural hazards, and addressing climate change through mitigation and adaptation strategies. Continental20

freshwater resources are stored in groundwater aquifers, soils ranging from the surface through the root zone to deeper layers,

surface water bodies, snow or ice sheets, and plants. These water storage compartments are inextricably linked to both global

and regional water, carbon and energy cycles and interact with various components of our Earth system, such as the biosphere.

The dynamics of water storage and fluxes undergo significant changes due to human activities, and shifts in the frequency and

patterns of hydrological extremes driven by climate change.25

Our current understanding of water storage dynamics across different terrestrial compartments relies on global and regional

hydrological and land surface models, remote sensing, and in situ observations. However, global numerical models often un-

derestimate long-term trends in terrestrial water storage (TWS), do not accurately capture extremes of wet and dry conditions

(Scanlon et al., 2018; Forootan et al., 2024), often do not account for human impacts, and struggle to represent the seasonal

cycle of TWS variations effectively (Scanlon et al., 2019). At the other hand, most in situ and remote sensing data only provide30

insight into water storage in specific land surface compartments.

Satellite gravimetry is the only remote sensing technique that provides information on the vertically integrated variations of

TWS, based on observations from the Gravity Recovery and Climate Experiment (GRACE) and its successor, GRACE Follow-

On (GRACE-FO). However, their use at subregional scales and in operational applications is limited by their coarse spatial

resolution of a few hundred kilometers and their monthly temporal resolution. Integrating GRACE/-FO observations into hy-35

drological and land surface models allows us to update all sub-monthly simulated water storage compartments, which typically

include groundwater, soil moisture at different depths, surface water and snow, while simultaneously downscaling the coarse

GRACE/-FO observations to the higher resolution model grid (Figure 1). Several approaches exist for merging GRACE/-FO

observations with numerical models including Bayesian Model Averaging (BMA), machine learning (ML) - including deep

learning (DL) - and data assimilation (DA) algorithms (Section 3). DA offers the significant advantage of updating not only the40

target state variables such as groundwater and soil moisture, but also related hydrological fluxes, including evapotranspiration,

snowmelt, river discharge, surface and subsurface runoff, infiltration, and groundwater recharge and discharge, in a physically

consistent way (Figure 1). In their seminal paper, Zaitchik et al. (2008) introduced a Kalman smoother algorithm for assimi-

lating GRACE data into the Catchment Land Surface Model (CLSM, Koster et al. 2000) over the Mississippi river basin. Two

key takeaways from this pioneering work are as follows: first, the demonstrated potential of DA to downscale coarse-scale45

GRACE observations, and second, the success of vertical disaggregation of TWS to updates in groundwater, soil moisture and

snow, with a particular enhancement of groundwater and also river discharge modeling. Several subsequent studies applied

GRACE/-FO DA to other hydrology and land surface models.

A key variable of interest in GRACE/-FO DA studies is groundwater, as it remains challenging to observe directly at large
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Figure 1. The GRACE and GRACE Follow-On (GRACE/-FO) data assimilation (DA) concept: A numerical model simulates daily or even

subdaily individual water storage components and fluxes on a user-defined grid. In contrast, the GRACE/-FO satellites observe the total

variation in monthly TWS aggregated over large footprints and over all storage compartments. During DA, the model’s individual storage

compartments are updated towards the GRACE/-FO observations. These updates influence water fluxes – illustrated by the arrows in the

figure – as well as other related model variables such as soil temperature, energy fluxes, and plant growth.

scales and is significantly influenced by human activities (Döll et al., 2012; Girotto et al., 2017; Li et al., 2019). Yin et al.50

(2020) validated GRACE DA results against more than 150 in-situ groundwater wells across the North China Plain, demon-

strating a substantial improvement in correlation. Likewise, Tangdamrongsub et al. (2017) found that GRACE DA enhanced

the correlation between groundwater storage estimates and well observations in the Hexi Corridor in northern China, where

a rapid groundwater decline was identified and attributed to agricultural activities. Similarly, Tangdamrongsub et al. (2018)

reported that GRACE DA improved estimates of groundwater depletion in the North China Plain and Australia compared to55

global hydrological models. Over Iran, Khaki et al. (2018c) showed that GRACE DA more effectively captured the extensive

groundwater extraction occurring in the region compared to a standard model run. Aiming at applications for local water man-

agement, Stampoulis et al. (2019) set up a high-resolution model over California and integrated GRACE data to determine

water table dynamics.
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Snow-dominated catchments contribute a large seasonal component to TWS variations, and GRACE/-FO DA shows great60

potential for constraining snow cover fraction and depth in land surface or hydrological models, especially with multi-sensor

approaches (Su et al., 2010; Zhao and Yang, 2018; Girotto et al., 2020; De Lannoy et al., 2022). Forman et al. (2012) demon-

strated improved snowpack estimation over the Mackenzie River Basin using GRACE DA. Subsequently, Bahrami et al. (2021)

showed improvements in grid-scale snow estimates and highlighted their relationship to improved flood simulations. Finally,

Wang et al. (2021) discussed the potential conflicts in snow compartment updates resulting from multi-sensor DA.65

Long-term water cycle reanalyses using GRACE/-FO DA have been shown to be effective in constraining trends not only in

TWS but also in other key hydrological variables (van Dijk et al., 2014; Gerdener et al., 2022, 2023; Chi et al., 2024). For

instance, Chi et al. (2024) found that GRACE DA amplified negative TWS and evapotranspiration (ET) trends over Northern

India and attributed these trends to high irrigation rates. Jung et al. (2019) reported improved surface soil moisture simulations

resulting from GRACE DA in humid West African regions characterized by large TWS amplitudes.70

The impact of GRACE/-FO DA on streamflow simulations varies considerably by region. For example, Tangdamrongsub et al.

(2015) reported only minor improvements in streamflow simulations compared to gauging station observations in the Rhine

catchment. In contrast, Getirana et al. (2020a) demonstrated that updating groundwater and soil moisture storage with GRACE

DA led to significant improvements in streamflow forecasts over the Niger River basin. Furthermore, Wu et al. (2022) con-

ducted a global GRACE DA study and found that streamflow estimates were notably enhanced in snow-dominated catchments.75

The downscaling and disaggregation of GRACE/-FO data through DA also improves drought monitoring and contributes to

water-related disaster warning systems. TWS-based drought indices can be computed at the resolution of the model grid and

are available in near-real-time applications, such as NASA’s GRACE-based Drought Indicators (https://nasagrace.unl.edu/;

Houborg et al. 2012; Li et al. 2019; Getirana et al. 2020b). Moreover, DA enables improved attribution of droughts to individ-

ual water storage components, such as soil moisture drought and groundwater drought, as demonstrated for regions like the80

Murray-Darling Basin (Schumacher et al., 2018) and over Europe (Li et al., 2012). On the other hand, GRACE/-FO DA also

improves the simulation of wet extreme events, as shown by Reager et al. (2015) for the Missouri River Basin, where updated

groundwater and snow water data helped constraining flood potential in the region.

In recent years, GRACE/-FO DA has been increasingly integrated into multi-sensor DA systems, mainly in combination with

remotely sensed surface soil moisture data. An attempt by Tian et al. (2017) demonstrated improved estimates of surface soil85

moisture, root-zone soil moisture and groundwater - compared to in situ observations - by joint assimilation of GRACE and

SMOS data over Australia. These results have been confirmed by Girotto et al. (2019) over the United States, by Khaki and

Awange (2019) over South America, and by Khaki et al. (2019) for the Murray-Darling and Mississippi River basins. Building

on this work, Khaki et al. (2020) further incorporated leaf area index to investigate the impact of individual observational

datasets on DA results, model parameter estimation and model prediction. The study found that while single-sensor DA led to90

greater improvements for individual variables, the multi-sensor approach produced the most consistent improvements across

all variable estimates, consistent with the findings of Tangdamrongsub et al. (2020). More recently, Mehrnegar et al. (2023)
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reported similar results using different Bayesian and Markov chain Monte Carlo merging algorithms. Schulze et al. (2024)

demonstrated that the degradation of simulated streamflow through GRACE DA could be mitigated to some extent by addi-

tionally assimilating streamflow observations. Another multi-sensor DA framework was developed by Wongchuig et al. (2024)95

over the Amazon River Basin. This framework integrated observations of water surface elevation, TWS, flood extent, and soil

moisture, demonstrating that multi-sensor DA consistently outperformed single-sensor DA experiments.

In other applications, GRACE/-FO DA output has demonstrated potential in removing hydrology-induced deformation from

Global Navigation Satellite System (GNSS) vertical deformation time series, which could help reveal underlying geophysi-

cal signals (Springer et al., 2019). Similarly, but with a different objective, Tangdamrongsub and Šprlák (2021) showed that100

GRACE/-FO DA effectively captures hydrology-induced loading deformation of the land surface, offering promising appli-

cations, particularly in data-sparse regions. Furthermore, Jensen et al. (2024) utilized GRACE/-FO DA results to evaluate

long-term drying and wetting trends in TWS within CMIP6 models. Recently, Khaki et al. (2023) assimilated GRACE-FO

data based on along-orbit line-of-sight gravity differences into a land surface model, enhancing its ability to capture high-

frequency water storage variations. This method is particularly valuable for simulating wet extremes. Moreover, Soltani et al.105

(2024) were the first to assimilate GRACE data into a land surface model coupled with a dedicated subsurface model with

three-dimensional groundwater flow within a multi-sensor framework. Furthermore, the integration of DA frameworks with

machine learning techniques, as demonstrated by Liu et al. (2021), has shown promise in improving groundwater level pre-

dictions at lead times of several months. Finally, the impact of human activities, such as groundwater pumping and irrigation

– often not represented in land surface models but potentially corrected through GRACE/-FO DA – has gained increasing at-110

tention (Girotto et al., 2017; Nie et al., 2019; Getirana et al., 2020b). However, this remains a challenging task, as assimilation

increments are not always allocated to the correct storage compartments, highlighting the need for further research.

The above studies use a variety of different hydrological and land surface models and different GRACE/-FO observation prod-

ucts and differ significantly in their assimilation algorithms. Developing an assimilation algorithm requires several methodolog-

ical choices, including (i) the selection of the observation grid (Forman and Reichle, 2013), (ii) the handling of observation115

error correlations (Eicker et al., 2014; Khaki et al., 2017c), (iii) the choice among various sequential DA techniques, includ-

ing localization methods and emerging DA algorithms (Khaki et al., 2017b, 2018a; Shokri et al., 2018, 2019), (iv) adopting

strategies for applying analysis increments and updating the model (Girotto et al., 2016), and (v) selecting other observables

within multi-sensor DA (Girotto et al., 2019; Tangdamrongsub et al., 2020). A thorough synthesis of existing studies is not

yet available, and the optimal approach for assimilating GRACE/-FO observations into hydrological and land surface models120

remains an open question.

In this contribution, we discuss established concepts for GRACE/-FO DA, synthesize the current state of research, and open

up perspectives on new directions. In Section 2, we start with the representation of simulated TWS in hydrological and land

surface models and establish the link to observed TWS from GRACE/-FO. We also examine possible choices for GRACE/-FO

data products, the handling of observation errors, and necessary post-processing steps. Section 3 provides a comprehensive125

review of existing GRACE/-FO DA frameworks, analyzing key methodological choices, technical aspects, and the advantages
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and limitations of different approaches. This is followed by a discussion of validation strategies for DA experiments in Section

4. A major point of this paper is to identify current challenges and open issues in GRACE/-FO DA frameworks, which we

explore in Section 5. Finally, we conclude in Section 6 with perspectives on future research directions and in Section 7 with a

synthesis of best practice recommendations and key next steps for the community.130

2 Modeling and remote sensing of terrestrial water storage changes

Remote sensing observations and numerical models provide complementary insights into TWS, but they have significant dif-

ferences in spatial and temporal resolution, sources of error, and correction requirements. Most hydrology and land surface

models simulate TWS as the sum of the individual storage compartments, while GRACE/-FO products provide only TWS

anomalies (TWSA), i.e., the deviation of TWS from a long-term mean. This section outlines the challenges associated with de-135

riving TWSA from hydrological and land surface models. It also presents the currently available GRACE/-FO products along

with the commonly applied geophysical corrections and downscaling techniques.

2.1 Modeling terrestrial water storage

Numerical models simulate increasingly complex processes that control water storage and fluxes, while they disregard others

depending on the intended application of the model. Models used in GRACE/-FO analyses are generally classified into Global140

Hydrological Models (GHMs, Sood and Smakhtin 2015), and Land Surface Models (LSMs, Overgaard et al. 2006), with

some hybrid models incorporating features of both types. Each model category emphasizes different aspects of the water

cycle: GHMs typically focus on large-scale hydrological processes and often account for anthropogenic influences such as

water abstraction, irrigation, and reservoir management. In contrast, LSMs simulate land-atmosphere interactions, prioritizing

energy and water exchanges and often allowing the incorporation of the carbon cycle. While GHMs primarily rely on simplified145

hydrological equations that emphasize water movement, LSMs use more detailed, process-based equations to model energy,

water, and carbon exchanges, but often with a poor representation of anthropogenic processes.

A key aspect of TWS modeling is the representation of changes in individual water storage components. Common GHMs and

LSMs differ in how these individual storages are simulated. For example, some models include detailed representations of

groundwater flow and aquifer dynamics, whereas others treat groundwater more simplistically or omit it altogether (Scanlon150

et al., 2018; Condon et al., 2021). It is important to note that this hinders a quantitative comparison of individual storages across

different models or even different versions of the same model; e.g. soil water storage may refer to vastly different soil depths in

differing models (Jensen et al., 2024). Similarly, processes such as river routing, snowmelt, and evaporation are handled with

varying degrees of complexity. Most models struggle with accurately capturing the interactions between individual storage

components and the temporal and spatial variability of these processes (Telteu et al., 2021).155

Table 1 provides a summary of models that generate TWS data at the global or continental scale. These models are categorized

by type into GHM, LSM, or hybrids thereof, and their original capability to include anthropogenic influences (e.g., water
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management, land use changes). Most global models are run at resolutions ranging between 0.5° and 0.25°, but continental-

scale applications are available at much higher resolutions down to a few kilometers.
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Table 1. Summary of some models that have been used to estimate total water storage anomalies. GHM: Global Hydrological Model;

LSM: Land Surface Model. AWRA: Australian Water Resources Assessment; CABLE: CSIRO Atmosphere Biosphere Land Exchange;

CLM: Community Land Model; HBV: Hydrologiska Byråns Vattenbalansavdelning (Hydrological Bureau Water Balance Section); CLSM:

Catchment Land Surface Model; CRUNCEP: Climate Research Unit National Centers for Environmental Prediction; GSWP: Global Soil

Wetness Project; HTESSEL: Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land; LISFLOOD: Lisflood-Flood Forecasting

System; MESH: Modélisation Environmentale Communautaire (Community Environmental Modeling); MGB: Modelo de Grandes Bacias

(Large Basin Model); ORCHIDEE: ORganizing Carbon and Hydrology In Dynamic EcosystEms; PARFLOW: Parallel Flow Model; PCR-

GLOBWB: PCRaster Global Water Balance; SWBM: Simplified Water Balance Model; SURFEX-TRIP: Surface Externalisée (SURFEX)

with Total Runoff Integrating Pathways; VIC: Variable Infiltration Capacity; W3RA: Water Resources Reanalysis in Australia; WGHM:

WaterGAP Global Hydrology Model; WBM: Water Balance Model. The components available for each model are indicated by SW: Surface

Water, SM: Soil Moisture and GW: Groundwater.

Model Type Components Anthropogenic Reference

AWRA-L LSM SW, SM, GW Partial Viney et al. (2014)

CABLE LSM SW, SM No Kowalczyk et al. (2006)

CLM3.5 LSM SW, SM No Oleson et al. (2007)

CLM4 LSM SW, SM Partial Lawrence et al. (2011)

CLM5 LSM SW, SM, GW Yes Lawrence et al. (2019)

CLSM LSM SW, SM, GW No Koster et al. (2000)

HBV-SIMREG GHM SW, SM No Lindström et al. (1997)

HTESSEL LSM SW, SM No Balsamo et al. (2015)

LISFLOOD GHM SW, SM, GW Yes Van Der Knijff et al. (2010)

MESH GHM/LSM Hybrid SW, SM, GW Yes Pietroniro et al. (2007)

MGB GHM SW, SM, GW Yes Collischonn et al. (2007)

Noah LSM SW, SM No Ek et al. (2003)

Noah-MP LSM SW, SM, GW No Niu et al. (2011)

ORCHIDEE LSM SW, SM, GW Partial Polcher et al. (2011)

ParFlow-CLM LSM+G SW, SM, GW No Maxwell et al. (2015)

PCR-GLOBWB GHM SW, SM, GW Yes Sutanudjaja et al. (2018)

SURFEX-TRIP LSM SW, SM No Decharme et al. (2013)

SWBM GHM SW, SM No Koster and Mahanama (2012)

VIC LSM SW, SM Yes Liang et al. (1996)

W3RA GHM SW, SM No Van Dijk (2010)

WGHM GHM SW, SM, GW Yes Müller Schmied et al. (2021)

WBM GHM SW, SM, GW Yes Tiaden et al. (1998)
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2.2 GRACE-/FO products160

Since 2002, the GRACE satellite mission (Tapley et al., 2004) and its follow on mission GRACE-FO launched in 2018 (Lan-

derer et al., 2020) monitor global TWS changes (Wahr et al., 1998), which is an essential climate variable (ECV) reflecting

the impact of global climate change on our water resources (Rodell and Reager, 2023). Three official analysis centers process

the GRACE/-FO observations, including the Center for Space Research (CSR), the Jet Propulsion Laboratory (JPL), and the

Helmholtz Centre for Geosciences (GFZ). However, other research institutions and universities also provide GRACE/-FO-165

derived datasets, e.g., NASA Goddard Space Flight Center (GSFC), Space Geodesy Research Group at the French National

Centre for Space Studies (GRGS/CNES), the Ohio State University, the Technical University of Graz, and Tongji Univer-

sity. Besides, combined solutions are available from the European Gravity Service for Improved Emergency Management

(EGSIEM, https://egsiem.eu/tools). The most commonly used GRACE/-FO data products are based on the two main process-

ing strategies of spherical harmonics (SH) and mass concentration (mascon) methods that are usually provided with monthly170

temporal resolution and a few hundred km spatial resolution. Estimating monthly gravity fields involves reducing tidal and

non-tidal high-frequency mass changes in the atmosphere and ocean (e.g., by applying Atmosphere and Ocean De-Aliasing

(AOD1B) background model corrections, Shihora et al., 2022). Recently, the estimation of daily SH-based products (such as

Mayer-Gürr et al., 2018) and five-daily mascon-based products (Retab et al., 2024) is gaining growing attention.

Post-processing of the GRACE/-FO SH coefficients (provided as Level-2 data products) includes replacing the degree-1 (geo-175

center; e.g., Sun et al. (2016) ) and C20 and C30 coefficients by solutions from Satellite Laser Ranging (Loomis et al.,

2019, 2020; Cheng and Ries, 2023) and applying corrections to account for glacial isostatic adjustment (GIA, see Section

2.3). Furthermore, spatial filtering is essential to reduce noise from higher-order coefficients. This can be achieved using an

anisotropic filter (e.g., Kusche, 2007; Klees et al., 2008b), which also helps to mitigate correlated errors, or an isotropic filter

(e.g., the Gaussian filter introduced by Jekeli, 1981), which is often combined with a destriping filter to further reduces the180

impact of correlated errors (Swenson and Wahr, 2006). Grid scaling factors to account for spatial leakage effects are provided

by some centres (e.g., Landerer and Swenson, 2012) and can be applied by the user. All provided Level-2 datasets are anoma-

lies relative to a specified temporal baseline. As a result, expert knowledge is required for making appropriate decisions for the

individual post-processing steps.

Gridded Level-3 datasets, i.e. TWSA grids values obtained from SH, or mascon solutions that also provide a global TWSA185

grid, might be more user-friendly for a wider community. The mascon approach applies similar corrections compared to the

spherical harmonic approach but uses equal-area spherical cap mascons placed on the surface of an elliptical Earth to derive

global TWSA grids (see, e.g., Watkins et al., 2015). It is important to distinguish between the native spatial resolution of the

GRACE/-FO data of approximately 300 km (Kim et al., 2024) and the spatial sampling used to provide Level-3 TWSA grids,

e.g., on 0.5◦ or 1◦ global grids. Some studies have compared the SH and mascon solutions for selected river basins, e.g., Jing190

et al. (2019); Novák et al. (2021), where statistically significant differences are observed for several of the selected regions. A

comparison with GNSS vertical deformations for the Amazon basin showed slightly better agreement with mascon solutions
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(Wang et al., 2023). However, the authors also report larger differences between different mascon solutions compared to dif-

ferences between different SH solutions (Wang et al., 2023). In orbit K-band range-rate residuals (derived from Level-1B data

products) and along-orbit line-of-sight gravity difference measurements from the GRACE-FO laser ranging interferometer can195

also be used to study hydrological processes (e.g., Eicker and Springer, 2016).

The GRACE/-FO data products are commonly accompanied by uncertainty estimations. These might be provided as standard

deviations of SH or gridded TWSA or as fully propagated error-covariance matrices (Section 3.3). Only full error-covariance

matrices reflect spatial correlations between TWSA grid cells, which are particularly strong in the north–south direction. (e.g.,

Kvas et al., 2019). However, "formal" error covariances (or variances, if only standard deviations are provided) reflect only200

instrument and orbital errors but not errors in background models, and "calibrated" error covariances should be preferred in

DA applications (Klees et al., 2008a).

2.3 Geophysical corrections

Since GRACE/-FO observations contain signals that are not representative of hydrological processes, geophysical corrections

are essential to extract the water storage changes of interest. Glacial isostatic adjustment (GIA) is the effect of ice unloading205

in response to the ice masses covering the Earth during the ice ages, which is still present and thus sensed nowadays, approxi-

mately 20 000 years after the last glacial maximum. The effect of GIA in GRACE/-FO TWSA is most prominent in areas that

are still covered by ice, e.g. Greenland but also far-distance regions can be affected albeit with a smaller magnitude. Typically,

GIA is removed from the GRACE/-FO TWSA by using models that incorporate ice history and viscosity of the mantle to com-

pute GIA mass rates (Peltier, 2004; A et al., 2012; Caron et al., 2018). However, these GIA models are subject to considerable210

uncertainties that inevitably create false trends in TWSA estimates (Vishwakarma et al., 2021a).

Earthquakes are another source of mass redistribution that are included in the GRACE/-FO data biasing the correct analysis of

other hydrological signatures and events such as linear trends or droughts (Deggim et al., 2021). A temporal model can be fitted

to the data (e.g., Einarsson et al., 2010; Deggim et al., 2021) that contains a co-seismic jump and a post-seismic relaxation. In

this way, large earthquakes can be removed from the data, for example, the Sumatra-Andaman earthquake in 2004. However,215

Gerdener (2024) found that the removal of two earthquakes from the GRACE/-FO TWSA prior to DA did not significantly

alter the results. Yet, the higher spatial resolution which will be achieved with future gravity missions might lead the earthquake

correction to be a necessary processing step prior to DA (Kusche et al., 2025).

Due to the mission constellation and background model errors, the GRACE/-FO gravity fields provided as SH are affected by

high-frequency noise and correlated errors, requiring filtering (e.g., Wahr et al., 1998; Jekeli, 1981; Kusche, 2007). As the fil-220

ters cannot distinguish between signal and noise, the signal magnitude is changed as well, which is known as leakage. Leakage

is especially dominant for those locations with large water bodies or at the coast. For example for lakes, the signal within the

lake is reduced by the filter and smears into the surrounding land area. To account for leakage globally before DA, rescaling is

commonly applied, which means that TWSA scale factors are estimated from hydrological model output, which in turn creates

another source of uncertainty. Another possibility is the RECOG (REgional COrrections for GRACE) dataset (Deggim et al.,225
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2021) that allows the removal of signals from large lakes and reservoirs from the GRACE TWSA and the relocation to its

spatial origin within the lakes/reservoir outlines. The dataset was computed from forward-modeling of surface water volume

estimates of major lakes sensed by altimetry and optical remote sensing.

2.4 Downscaling

The coarse resolution of GRACE/-FO-derived TWSA maps prohibits the monitoring of fine-scale hydrological signals. This230

limitation necessitates the consideration of downscaling techniques before or along with DA, with careful attention to error

propagation during the process. Downscaling not only aims to improve the spatial resolution of GRACE/-FO-derived TWSA

but also to deal with issues such as leakage correction.

Various approaches have been proposed for downscaling GRACE/-FO data. A purely statistical approach to downscaling relies

on multivariate or bivariate linear relationships between coarse- and fine-scale datasets to generate downscaled products. For235

instance, Yin et al. (2018) used the linear relationship between GRACE data and high-resolution evapotranspiration data to

enhance the spatial detail of GRACE-derived groundwater storage anomalies. Similarly, Vishwakarma et al. (2021b) applied

multivariate linear regression to downscale GRACE TWSA, leveraging relationships with water storage fields from WGHM,

multiple precipitation datasets, evapotranspiration, and two distinct runoff models.

However, linear statistical methods face key limitations: i) they cannot represent nonlinear relationships between coarse- and240

fine-scale datasets, and ii) they generate downscaled outputs without considering the marginal or joint distributions of the

datasets, thus lacking a way to quantify uncertainty in their results. While the first challenge remains difficult to address, a

Bayesian framework offers a solution to the second challenge by providing a posterior distribution for the target variable.

It even allows the posterior distribution to be defined indirectly using sampling techniques like Markov Chain Monte Carlo

(MCMC). Recent work has employed MCMC to downscale GRACE water storage changes, producing groundwater and soil245

moisture estimates at approximately 12.5 km resolution (Mehrnegar et al., 2021).

Although the Bayesian framework addresses uncertainty estimates and can be used to downscale GARCE/-FO data, it struggles

to deal with the first challenge. To tackle this, nonlinear Machine Learning (ML) algorithms have been used in GRACE/-FO

downscaling, including Artificial Neural Networks (ANN) (Miro and Famiglietti, 2018), Boosted Regression Trees (BRT)

(Seyoum et al., 2019), Random Forest (RF) (Jyolsna et al., 2021), Long Short-Term Memory (LSTM) networks (Gorugantula250

and Kambhammettu, 2022) and more recently, Convolutional Neural Networks (CNN) (Gou and Soja, 2024). However, despite

their strengths, ML methods typically lack physical interpretability and fail to provide comprehensive uncertainty estimates,

suggesting that alternative or complementary methods may be needed.

Recently, Tourian et al. (2023) proposed a copula-supported Bayesian framework to tackle the two key challenges in statistical

downscaling: modeling nonlinear dependencies and quantifying uncertainty. This approach is supposed to capture both linear255

and nonlinear dependencies between random variables without requiring explicit knowledge of their marginal distributions.

Using this method, the posterior distribution is obtained directly, enabling the derivation of the Maximum A Posteriori (MAP)
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solution as the downscaled product and the posterior dispersion as an uncertainty estimate for the downscaled result.

In contrast to the above mentioned techniques, DA methods take care of the horizontal and vertical downscaling by design.

This is discussed in Section 3.5.260

2.5 Bias correction

As has been mentioned before, the GRACE/-FO data are heavily processed to obtain TWSA estimates (Section 2.2,2.3) that

would be representative of hydrological processes. This processing involves smoothing which inevitably results in signal loss.

To restore the lost signal, some GRACE products are accompanied by multiplicative gain factors, which are applied to the grid-

ded TWSA estimates Landerer and Swenson (2012). Furthermore, to combine GRACE/-FO TWSA observations and model265

TWS simulations, the TWSA observations need to be converted to TWS by adding a long-term climatology, or conversely,

the model climatology needs to be removed from TWS simulations before computing bias-free observation-minus-forecast

differences, or innovations.

As a first order correction, the long-term mean can be either removed from the model within the observation operator (see

below) – matching the GRACE/-FO reference period – or added to the GRACE/-FO time series prior to DA. It is also possible270

to match the higher order statistical moments of the observations to those of the model – which is often done in the case when

assimilating remotely sensed soil moisture observations –, to improve physical consistency and numerical stability (Drusch

et al., 2005; Kumar et al., 2009; Albergel et al., 2017). To this end, Reichle and Koster (2004) introduced the concept of Cu-

mulative Distribution Function (CDF) matching, and recent studies developed more sophisticated methods including neural

network-based approaches (Kumar et al., 2012; Fairbairn et al., 2024). For TWSA DA, the differences in the observed and275

simulated dynamic range are often related to differences in amplitudes or trends (Scanlon et al., 2018, 2019). Some GRACE/-

FO DA frameworks adjust both the mean and the standard deviation to match those of the model (Girotto et al., 2017; Khaki

et al., 2020), which can potentially absorb all of the product scaling efforts above (Girotto et al., 2016) but sacrifice informa-

tion contained in the measurements. Other GRACE/-FO DA frameworks prefer to retain the full information content of the

GRACE/-FO time series and only adjust the long-term mean (Tangdamrongsub et al., 2020; Gerdener et al., 2023).280

Ideally, any differences in trends should be reconciled to have a theoretically optimal DA system, but in most cases, the trend

of the GRACE/-FO observations is kept to correct missing trends in the model (due to missing processes). The choice of bias

correction will eventually influence the nature of the remaining observation and forecast error covariances (Dee, 2005; Eyre,

2016).

3 Status of current GRACE/-FO DA frameworks285

The assimilation of GRACE/-FO-derived TWSA into GHMs and LSMs is typically conducted on a monthly timescale as

illustrated in Figure 2. Throughout the month, an ensemble of model states is simulated, representing individual water storage

compartments. These state variables are translated into observation space, i.e., into TWSA, via an observation operator (Section
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Figure 2. General concept for assimilating monthly GRACE/-FO-derived TWSA into GHMs and LSMs showing two options for applying

the assimilation increments: After computing the increments, the model is either (A) rewound and re-run over the month with the increments

distributed across all days, or (B) updated by applying the full monthly increment at the end of the month.

3.5). The DA algorithm – most commonly variants of the Ensemble Kalman Filter (EnKF) or Ensemble Kalman Smoother

(EnKS) – integrates model predictions with observations while accounting for their respective uncertainties. For monthly290

TWSA DA, the distinction between a filter and smoother is somewhat vague in the literature, and we will refer to EnKF and

EnKS interchangeably, as will be discussed in Section 3.2. In any case, a monthly TWSA innovation is computed and usually

translated into a monthly increment, or else into a daily increment, using the error cross correlations between daily and monthly

TWSA forecasts. The increment is then applied to the first or final day of the month, providing the initial condition for the next

model run, or it is distributed across all days of the current month by rewinding the model and integrating the model for the295

entire month again (Figure 2). Note that, in contrast to the above described approaches, some studies combine observations and

model output after the model has been run over the entire study period, without incorporating new information into the model

after each update step (van Dijk et al., 2014; Mehrnegar et al., 2023). The following sections provide a detailed discussion of

each step outlined in Figure 2.

3.1 Review of existing GRACE/-FO DA frameworks300

Table 2 provides a detailed overview of existing GRACE/-FO DA frameworks and their characteristics, along with an evolution

of these frameworks. The frameworks exhibit notable differences in terms of filter algorithms, perturbation processes, model

update strategies, selected GRACE/-FO solutions, and approaches to dealing with observation errors.
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In their seminal paper, Zaitchik et al. (2008) utilized three years of GRACE data, which were incorporated into the CLSM

model as catchment-averaged time series for four subbasins of the Mississippi river basin. Later, this framework has been305

extended and applied for exploring technical aspects of the DA process, such as strategies for applying analysis increments

(Girotto et al., 2016). Concurrently, various GRACE/-FO frameworks based on different models have been developed. For

instance, the WGHM model was integrated within a joint calibration and DA framework (Eicker et al., 2014), a W3RA-based

DA framework was employed to investigate water balance components over Australia (Tian et al., 2017), and DA schemes

for different LSMs were developed for investigating trends in different water storage compartments (Springer et al., 2019; Nie310

et al., 2019; Zhao and Yang, 2018; Stampoulis et al., 2019). Today, there are at least 12 GRACE/-FO DA frameworks based

on different GHMs and LSMs, and most of the studies to date have been conducted for CLSM and W3RA (Figure 3a). These

frameworks have been primarily developed and tested for individual river basins rather than globally, the majority of which

are located on the North American continent, while only a small number of GRACE/-FO studies have been conducted for the

South American and African continents (Figure 3b).315

Table 2 highlights that most GRACE/-FO DA frameworks use the classical EnKF or EnKS approaches, but the effectiveness

of other sequential DA algorithms has also been evaluated (Schumacher et al., 2016; Khaki et al., 2017b) along with non-

parametric alternatives (Khaki et al., 2018d). Initially, GRACE/-FO data was assimilated at the basin or subbasin scale, but later

studies explored a range of grid sizes, typically from 0.5° to 4° (Khaki et al., 2017c). So far, no cross-framework consensus has

been reached regarding the optimal choice for the observation grid. It is crucial to consider that for higher-resolution observation320

grids, obtained after downscaling (Section 2.4), the examination of spatial correlations is a logical approach (Khaki et al.,

2017c; Springer, 2019), given the inherent limitations in the spatial resolution of GRACE/-FO data, but this is not done as a

standard so far (Figure 3d). At the time of the initial GRACE-DA studies, only GRACE solutions in the form of SH coefficients

were available. However, subsequent studies have employed not only mascon solutions but also Level-3 TWSA products

derived from SH solutions, which require less preprocessing efforts (Figure 3c, Section 2.2). As spatial filtering is employed325

in the derivation of SH solutions, which attenuates signals, approximately half of the studies utilize a rescaling procedure

to restore filtered signals (see Section 2.2 for further details). To date, the majority of studies have been conducted using

SH solutions, which permit the consideration of spatial correlations via the full error covariance matrices of the coefficients,

which can then be propagated onto the observation grid. In contrast, studies utilizing mascon solutions or Level-3 data may

alternatively assume a fixed correlation length (Figure 3d). The latest research developments have begun to explore the direct330

incorporation of GRACE/-FO Level-1b data, represented by along-orbit line-of-sight gravity difference (LGD) measurements

(Khaki et al., 2023). This approach overcomes the limitations of the conventional method, offering enhanced performance in

capturing high-frequency TWSA observations, including at submonthly time scales (Section 6.3).

In recent years, multi-sensor DA frameworks have gained popularity, through a combination of GRACE/-FO data with other

satellite data to better constrain the DA (see Section 1). To the best of our knowledge, only the CLSM-based GRACE/-FO335

DA framework has been used operationally, i.e. for the NASA drought monitor for groundwater and soil moisture conditions

https://nasagrace.unl.edu/ (Houborg et al., 2012; Li et al., 2019; Getirana et al., 2020b). Recently, the groundwater storage
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Figure 3. Statistics of common settings in GRACE/-FO DA experiments, including the (a) hydrological model used, (b) continent of study,

(c) GRACE/-FO observation product (analysis approach), and (d) observation error model (Status as of October 2024).

changes from the GLWS2.0 dataset developed at the University of Bonn via assimilating GRACE/-FO TWSA data into the

WaterGAP model have been integrated into the operational water and biodiversity risk assessment tools of the WWF (WWF,

2024).340
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Table 2: Overview on GRACE/-FO DA frameworks and conducted studies (Status as of November 2024). Please refer to

Table 1 for details on the models in the first column. Abbrevations: R.B.: River Basin, MC: mascon, SH: Spherical Harmonics,

no: not available, EnKS: Ensemble Kalman Smoother, EnKF: Ensemble Kalman Filter, LETKF: Local Ensemble Transform

Kalman Filter, LGD: line-of-sight gravity difference, SQRA: Square root Analysis, K.-Takens: Kalman Takens, EnSRF: En-

semble Square Root Filter, UWCenKF: Unsupervised Weak Constrained ensemble Kalman Filter, AEnKF: Adaptive Ensem-

ble Kalman Filter, EAKF: Ensemble Adjustment Kalman Filter, SVM: Support Vector Machine, LEnKF: Localized Ensemble

Kalman Filter, ∗: includes several GLDAS models (CLM, Mosaic, NOAH, VIC, W3RA), SM: soil moisture, GW: groundwater

Assimilation System GRACE/-FO Data Application

Model Study Area Technique Type Grid Corr References Scope

CLSM Mississippi R.B. EnKS SH subbasins no Zaitchik et al. (2008) spatial, temporal, vertical downscaling

Mackenzie R.B. EnKS SH,MC subbasins no Forman et al. (2012) GRACE-DA in a snow dominated catchment

North America EnKS SH subbasins no Houborg et al. (2012) drought indicators based on GRACE-DA

Europe EnKS SH subbasins no Li et al. (2012) drought monitoring

Mackenzie R.B. EnKS synth. subbasins no Forman and Reichle

(2013)

impact of observation grid

Missouri R.B. EnKS Level-3 1◦ no Reager et al. (2015) regional flood potential

USA EnKS Level-3 1◦ 3◦ Girotto et al. (2016) strategies for applying analysis increments

USA EnKS Level-3 1◦ no Kumar et al. (2016) integration of GRACE data into the NLDAS sys-

tem

India EnKS Level-3 1◦ 3◦ Girotto et al. (2017) TWS depletion

global EnKS MC 0.5◦ 2◦ Li et al. (2019) improved modeling of GW storage variations

USA EnKF Level-3 3◦ 2◦ Girotto et al. (2019) improved shallow GW estimation

West Africa EnKS MC 0.5◦ no Jung et al. (2019) improved modeled surface SM

West Africa EnKS MC 0.5◦ no Getirana et al. (2020a) improved seasonal streamflow forecast

USA EnKS MC 0.125◦ no Getirana et al. (2020b) seasonal hydrological forecast initialization

USA EnKS MC 0.125◦ no Getirana et al. (2020b) seasonal hydrological forecast initialization

Volga R.B. EnKS synth. 1◦ 300

km

Wang et al. (2021) improved snow water and TWS estimates

global EnKF MC 3◦ 2◦ Felsberg et al. (2021) landslide prediction

North America EnKS SH 4◦ no Su et al. (2010) improved snow estimation

CLM3.5 Europe LETKF SH 0.5◦ cov Springer et al. (2019) daily hydrological loading in GPS time series

Europe LETKF SH 0.5◦ cov Klos et al. (2021) noise in daily GPS time series

WGHM Mississippi R.B. EnKF SH 5◦ cov Eicker et al. (2014) joint calibration and DA

Mississippi R.B. multiple synth. 5◦ cov Schumacher et al. (2016) impact of error correlations

Murray-Darling R.B. EnKF SH 0.5◦ cov Schumacher et al. (2018) drought representation

South Africa EnKF SH 4◦ cov Gerdener et al. (2022) signatures in precipitation - water storage - vege-

tation - evapotranspiration

global EnKF SH 4◦ no Gerdener et al. (2023) global land water storage dataset release 2

global LESTKF SH 4◦ cov Gerdener (2024) global land water storage dataset release 3

Mississippi R.B. EnKF SH 4◦ cov Schulze et al. (2024) joint DA with streamflow observations

Continued on next page...
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Continued from previous page

Model Study Area Filter Type Grid Corr References Scope

GLDAS∗ global EnKF SH 1◦ no van Dijk et al. (2014) a global water cycle reanalysis

wflow_hbv Rhine R.B. EnKF SH subbasins no Tangdamrongsub et al.

(2015)

improved GW estimates

W3RA Australia EnKS MC 3◦ no Tian et al. (2017) improved water balance components

Australia multiple SH 1◦ cov. Khaki et al. (2017b) assessing sequential DA techniques

Australia SQRA SH mult. cov. Khaki et al. (2017c) impact from spatial error correlations, localiza-

tion

Australia K.-Takens SH 1◦ cov. Khaki et al. (2018d) investigating alternative DA approaches

Bangladesh SQRA SH 1◦ cov. Khaki et al. (2018b) subsurface water storage depletion

Iran SQRA SH 1◦ cov. Khaki et al. (2018c) water storage depletion

multiple R.B. UWCEnKF SH 3◦ cov. Khaki et al. (2018a) new DA technique

Mississippi R.B.,

Murray Darling R.B.

SQRA,

K.-Takens

SH 3◦ cov. Khaki et al. (2019) Assimilating multi-mission satellite products

South America EnSRF SH 3◦ cov. Khaki and Awange

(2019)

improved GW and SM estimates

Mississippi R.B.,

Murray Darling R.B.

UWCenKF SH 1◦ cov. Khaki et al. (2020) multi-mission DA

global, selected R.B. EnKS,

EnKF

SH mult. cov. Yang et al. (2024) a generalized framework for GRACE/-FO DA

High Plain Aquifers ConBay SH 0.1◦ no Mehrnegar et al. (2023) multi-sensor DA, improved simulated GW

global EnKF SH, LGD 1◦ no Khaki et al. (2023) new DA approach based on Level-1 data

Brahmaputra R.B. EnKS/EnKF SH subbasins no Retegui-Schiettekatte

et al. (2025)

daily TWSA DA during flood events

PCR- Hexi Corridor (China) EnKS SH 0.5◦ cov. Tangdamrongsub et al.

(2017)

improved water resources estimates

GLOBWB Australia EnKS SH 0.5◦ cov. Tangdamrongsub et al.

(2018)

GW storage variations

Central S.-E. Asia EnKS SH 0.5◦ 3◦ Tangdamrongsub and

Šprlák (2021)

hydrology-induced land deformation

AWRA-L Murrumbidgee R.B. EnKF synth. basin no Shokri et al. (2018) assimilation into a high-resolution model

Murray-Darling AEnKF MC 3◦ no Shokri et al. (2019) alternative assimilation algorithms

CLM4 global EAKF MC-daily 1◦ no Zhao and Yang (2018) robust global SM and snow estimation

global EAKF MC-daily 1◦ no Wu et al. (2022) improved river discharge estimation

CLM5 East Asia EAKF MC 0.5◦ no Chi et al. (2024) hydrological trends

Noah-

MP

High Plains Aquifer EnKS MC 0.5◦ no Nie et al. (2019) irrigation induced GW trends

VIC Central Valley direct in-

sert

MC 0.5◦ no Stampoulis et al. (2019) improved representation of water table

CABLE Goulburn R.B. EnKS SH basin - Tangdamrongsub et al.

(2020)

improved SM and GW estimates

North China Plane EnKF SH, MC 1◦ cov. Yin et al. (2020) improved water storage estimates

Continued on next page...
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Continued from previous page

Model Study Area Filter Type Grid Corr References Scope

MESH Liard R.B. EnKS SH basin - Bahrami et al. (2021) improved snow simulations

Noah North-East US EnKF,

SVM

MC 0.5◦ no Liu et al. (2021) combined machine learning and DA approach

ParFlow-

CLM

part of Iran EnKF SH 1◦ no Soltani et al. (2024) DA in a coupled surface-subsurface model

MGB Amazon R.B. LEnKF Level-3 subbasins no Wongchuig et al. (2024) advances in multi-observational DA

3.2 DA algorithms

Most TWSA DA studies use a variant of the sequential EnKF or EnKS (Evensen, 1994, 2009; Lorenz et al., 2015). For monthly

GRACE/-FO TWSA DA, the line between the EnKF and EnKS is vague in literature. Whereas a filter typically assimilates

observations at one instant, a smoother would assimilate observations at multiple time steps over a longer observation window.

One can state that the assimilation of a single monthly GRACE/-FO TWSA observation at one instant is done through an345

EnKF. However, since the TWSA is a monthly aggregate, it is often used to update an entire time window of state variables

in a retrospective analysis and this process is then often referred to as an EnKS (e.g., Zaitchik et al., 2008; Li et al., 2012;

Forman et al., 2012; Kumar et al., 2016; Tian et al., 2017; Li et al., 2019; Getirana et al., 2020b; Wang et al., 2021; Bahrami

et al., 2021; Tangdamrongsub and Šprlák, 2021). In any case, the EnKF and EnKS represent the probability distribution of the

system state using a dynamic ensemble of model simulations (see Equations 27 to 39 in (Nerger et al., 2005)), and thereby350

overcome the need for a linear(ized) model to analytically propagate the forecast uncertainty in a traditional (extended) Kalman

filter or smoother. The ensemble approach is computationally efficient, making it suitable for large-scale systems and real-time

applications, and can further provide uncertainty estimates for both state variables and parameters. Nevertheless, all ensemble

techniques are sensitive to the choice of ensemble size, which can lead to sampling errors, especially with small ensemble sizes

or in highly nonlinear systems. In such cases, the ensemble may fail to capture the true variability of the system, and it is par-355

ticularly prone to collapse, meaning that all ensemble members converge to the same state (Mitchell et al., 2002). Furthermore,

the EnKF and EnKS are optimal and unbiased only when assuming Gaussian errors (Section 3.4), but in reality, errors are often

non-Gaussian as a result of non-linear model dynamics. This is a known limitation and can result in biased estimates. In the

context of GRACE/-FO DA, recent advancements have sought to address these issues through techniques such as localization

(Hunt et al., 2007), covariance inflation (Anderson and Anderson, 1999), and modifications of the EnKF or EnKS, including360

square root filters (Tippett et al., 2003) and alternative methods like particle filters (Crisan, 2001).

Localization is supposed to mitigate spurious long-range correlations, restrict the influence of observations on nearby grid cells,

and improve performance with limited ensemble sizes. This can be achieved either through covariance localization, which mod-

ifies the forecast error covariance matrix using a distance-dependent tapering function, or through domain-based localization,

where the analysis is performed independently for local regions or grid points (Kirchgessner et al., 2014; Evensen et al., 2022),365

or a combination of both. These two approaches imply that long-range correlations in the forecast error covariance matrix are

damped or removed, respectively. In the case of covariance localization, the influence of distant observations on model state
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updates is reduced by damping error cross-covariances between state variables and observation predictions. The covariance lo-

calization scale is typically set to a multiple of the spatial autocorrelation length in the forecast errors. Meanwhile, via domain

localization, the state update is restricted to the assimilation of nearby observations within an influence radius, as illustrated370

in Figure 2 of De Lannoy et al. (2016) for the case of soil moisture DA. Most often, both approaches are used together. Thus,

both localization approaches mitigate the impact of spurious error correlations in GRACE/-FO TWSA data and have proven

highly beneficial for GRACE/-FO DA (Schumacher, 2016; Khaki et al., 2017c). Additionally, covariance inflation methods,

which prevent filter divergence by artificially increasing the ensemble forecast spread, are commonly applied in GRACE/-FO

DA frameworks (Khaki et al., 2020; Gerdener et al., 2023).375

Square root filters, such as the Ensemble Transform Kalman Filter and the Ensemble Adjustment Kalman Filter, were designed

for improved numerical stability and reduced sampling errors compared to the standard EnKF (Schumacher et al., 2016; Khaki

et al., 2017b). Particle filters and smoothers, also known as Sequential Monte Carlo methods, are another class of sequential

DA techniques that have been applied for GRACE/-FO DA (e.g., Khaki et al., 2017b, 2018d). These techniques utilize a set

of particles to represent the probability distribution of the system state, propagating these particles through the model and380

weighing them based on their agreement with the observations. However, particle filters and smoothers are computationally

more demanding, especially for high-dimensional systems.

More recently, machine learning algorithms in conjunction with traditional DA methods have been put forward to assimi-

late GRACE/-FO data. For instance, Liu et al. (2021) proposed a support vector machine framework integrated with DA for

groundwater level forecasting using GRACE/-FO data. The effectiveness of such hybrid approaches depends on the availabil-385

ity of high-quality training data and the ability to generalize across different hydrological contexts. Such data-driven methods

have also been extensively applied to reconstruct past (Humphrey et al., 2017) and forecast future (Li et al., 2024) GRACE-like

TWSA.

3.3 Observation errors

After bias correction (Section 2.5), GRACE/-FO data still contains inherent errors that, if not adequately accounted for, can390

propagate through the assimilation process and affect the accuracy and reliability of the assimilated model version. In traditional

EnKF and EnKS approaches, observations are perturbed with additive noise to represent the random error.

The first GRACE/-FO DA studies assumed uniform and uncorrelated errors in the range of 10 mm to 30 mm equivalent water

height (Zaitchik et al., 2008). However, in reality the observation errors may not be uniformly distributed across the observed

area (Section 2.2) and Eicker et al. (2014) highlighted the importance of understanding the impact of anisotropically correlated395

TWSA observation errors on state estimates. Since then, three major strategies have emerged to address this issue, which are

applied either individually or in combination. First, the grid spacing can be chosen to match the native resolution of the TWSA

maps, resulting in either thinning or aggregation of the grid, typically to 3° or 4° spacing (Eicker et al., 2014; Khaki et al.,

2017c; Girotto et al., 2019; Gerdener et al., 2023). However, this means that some possible signal loss is accepted. Second,

spatial correlations between observation grid cells may be taken into account either by prescribing a fixed correlation length,400
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typically 3°, or by taking into account full error covariance matrices (Shokri et al., 2019; Tangdamrongsub and Šprlák, 2021;

Wang et al., 2021). Third, researchers have proposed localization techniques that account for spatial correlation errors in the

DA process (Tangdamrongsub et al., 2017; Gerdener, 2024). By ensuring that the influence of observations is appropriately

weighted based on their spatial proximity to model grid points, these techniques can enhance the reliability of GRACE/-FO

data integration into numerical models by limiting in particular the impact of spurious long-range correlations (Khaki et al.,405

2017c).

3.4 Forecast errors

In ensemble-based DA approaches, the forecast uncertainty is estimated by perturbing key components such as forcing data,

state variables, and model parameters. The perturbation scheme is designed based on the assumption that model uncertainties

are unknown and are propagated from model inputs (e.g., forcing data), configuration (such as number of soil layers and static410

parameters), and model physics. However, due to the finite ensemble size, the perturbation process can introduce unrealistic

long-range correlations within the ensemble. In high-dimensional systems, a small ensemble struggles to represent the true

error structures accurately.

Forcing data such as precipitation, temperature, and solar radiation are usually obtained from global atmospheric reanalyses

and often perturbed by adding or multiplying random noise to represent uncertainties in these variables. Spatial correlation415

errors can also be introduced during the perturbation process, to reflect the reality that reanalysis errors are often spatially

correlated, e.g., due to topography influences. Additionally, correlations among variables can be accounted for to preserve the

proper interactions between forcing variables during DA (Reichle et al., 2007).

Perturbing state variables – such as soil moisture or snow, which define the current condition of the system – ensures that the

ensemble represents a range of possible states. This becomes especially important when the perturbation from forcing data is420

small or does not impact all state variables that contribute to TWS. In GRACE/-FO DA, state variables typically include all

components of TWS, such as soil moisture, groundwater, and snow. However, the choice of which state variables to perturb

depends on the design of the DA scheme and the model employed. While perturbing all variables contributing to TWS is one

option, another approach is to perturb only a few selected state variables, or alternatively, to use only parameter perturbation,

as described below (Nie et al., 2019; Tangdamrongsub et al., 2018; Springer et al., 2019). Introducing correlations among TWS425

variables can also help maintain realistic interactions and behavior in the TWS estimates (Kumar et al., 2016). This ensures

that the ensemble better reflects the system’s actual dynamics during the DA process. Challenges may arise from non-Gaussian

behaviour of variables contributing to TWS (Section 5.3).

Finally, parameters that govern hydrological processes and / or describe soil properties can be perturbed to reflect uncertainties

in the physical or empirical relationships within the model. In real-world applications, many parameters are either estimated430

from limited data, or based on assumptions that may not be valid under all conditions. Perturbing these parameters allows the

ensemble to explore a range of possible model behaviors, which is crucial for accurately estimating the true state of the system,

especially when certain model processes are poorly formulated. The implementation of parameter perturbation may be simpler
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in models where parameters are pre-calculated (Tangdamrongsub et al., 2017), but it becomes more complex in models where

parameters are determined dynamically, such as through look-up tables (Peters-Lidard et al., 2007). Dedicated studies are often435

required to determine the sensitivity of model parameters and uncertainty ranges, ensuring that the perturbations adequately

capture the variability (Benke et al., 2008; Herrera et al., 2022).

The above perturbations may create an unintended bias in the forecast errors. To address this, the ensemble can be readjusted

after each perturbation step to better fit a Gaussian distribution, using an unperturbed model run in parallel with the ensemble

to correct the mean perturbation bias (Ryu et al., 2009).440

3.5 Innovations and increments

When assimilating GRACE/-FO data into models, key considerations include the mismatch in spatial and temporal resolution,

along with the decision of whether to compute innovations and increments at the observation or model resolution (in space

and time). Today, the most common approach for assimilating GRACE/-FO data is to use monthly TWSA maps, which have a

coarse spatial resolution (∼300 km), capturing large-scale changes in TWS. In contrast, GHMs or LSMs operate at much finer445

spatial (order of km) and temporal (daily or subdaily) scales. This discrepancy creates a challenge, as localized water storage

dynamics (such as small-scale groundwater variations or snow in complex terrains) may be smoothed out in the GRACE/-

FO observations (Section 5.2.2). Recent research has also explored submonthly assimilation intervals using weekly or daily

observation datasets (Khaki et al., 2017c; Wu et al., 2022; Khaki et al., 2023; Retegui-Schiettekatte et al., 2025), which is

discussed in detail in Section 6.2.450

Depending on the temporal and spatial scale at which model simulations and observations are compared, GRACE/-FO DA

can be categorized into two types: DA with TWSA innovations computed at the spatial and temporal resolution of GRACE/-

FO observations, and DA with TWSA innovations calculated at the model’s spatial resolution which is generally finer than

that of GRACE/-FO data. The latter choice is unique to GRACE/-FO DA – see Section 5.2 for a discussion of the specific

challenges associated with each approach. In most GRACE/-FO DA frameworks, TWSA forecasts (also called observation455

predictions) are computed at the resolution of the GRACE/-FO observations. The daily or subdaily model state variables

(groundwater, soil moisture,...) at the pixel scale are mapped to monthly coarser-scale TWSA observation predictions. TWSA

innovations are formed by taking the difference between observation predictions and GRACE/-FO observations, and these

TWSA innovations are then projected to model state increments via error cross covariances between these state variables and

their associated TWSA observation predictions. This process involves several steps that are implemented in the observation460

operator (Reichle et al., 2014): (i) computing TWS(A) for each model grid cell by summing individual storage compartments

(and possibly removing the climatology), (ii) spatially aggregating model grid cells to match the GRACE/-FO observation

grid, and (iii) temporally aggregating the modeled observation predictions to the monthly GRACE/-FO observation frequency,

by averaging all or select days within the month. The second approach takes on a simplified strategy by interpolating or

downscaling GRACE/-FO data directly onto the model’s finer grid, where innovations are then computed independently at465

each model grid cell (Tangdamrongsub et al., 2015; Nie et al., 2024; Chi et al., 2024).
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Assimilation increments are computed for each entry of the state vector. Typically, the state vector is filled with water storage

in individual compartments, such as root-zone soil moisture, snow, and groundwater of considered model grids, allowing for

the disaggregation of TWSA updates during the DA process (Khaki et al., 2017b; Gerdener et al., 2023). However, storage

compartments with a small contribution to the overall TWS variability, such as canopy water, are often excluded from the state470

vector to prevent instabilities and spurious updates in these variables. For monthly GRACE/-FO DA, monthly increments are

computed using the state error covariances on the last day of the month, or the monthly increment is computed as an average

of daily resolved increments (Girotto et al., 2016). This monthly increment is then applied either to the first day or the last day

of the month or distributed across all days by iterating through the entire month again.

In addition to updating model state variables, model parameters can also be adjusted during DA by augmenting the state vector475

with parameters sensitive to TWSA observations (Schumacher et al., 2016). This approach requires a prior sensitivity study to

identify the most relevant parameters.

4 Validation of DA experiments

This section discusses the validation of GRACE/-FO DA experiments using independent observation-based datasets, where

different metrics are applied and tailored to the variables of interest and the specific applications. Key challenges such as data480

sparsity, scale mismatches, and uncertainty quantification are addressed.

4.1 Commonly used validating variables and metrics

Hydrological applications often use GRACE/-FO TWSA observations to benchmark GHMs or LSMs (Scanlon et al., 2018;

Jensen et al., 2019). However, once GRACE/-FO data is assimilated, it can obviously no longer serve as an independent valida-

tion dataset. Since direct TWS measurements are rare, the performance is typically evaluated using independent observations485

corresponding to the model’s storage components (e.g., soil moisture, groundwater, snow water equivalent (SWE)) or to fluxes

impacted by the assimilation (such as runoff, streamflow, river water levels, and evapotranspiration (ET)). Recently, GPS mea-

surements of vertical land motion have also been used as a reference dataset for validation. It is important to note that datasets

used as model inputs, or observational constraints for assimilation in addition to GRACE/-FO TWSA are not independent.

Validation metrics can be broadly categorized into bias and variance dimensions. Bias metrics assess systematic errors be-490

tween model and reference targets, including bias, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), trends,

and climatology (seasonal amplitude and phase). Root Mean Square Difference (RMSD) is sometimes used in place of RMSE

when the reference dataset is not considered as a definitive “ground truth” to highlight discrepancies between datasets without

implying that one is entirely accurate. Besides, because models, satellite retrievals, and in situ measurements involve different

assumptions that may reflect real-world dynamics differently, they typically exhibit very different mean values and variability,495

therefore absolute bias evaluations are not always meaningful (Reichle and Koster, 2004). Instead, unbiased RMSE or RMSD

(ubRMSE or ubRMSD) can be used to isolate variance-related errors by removing bias (Girotto et al., 2016).
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Variance metrics focus on capturing how much the model outputs vary from their expected values or fluctuate over time. Com-

mon metrics include Pearson or rank correlation (on raw, deseasonalized, or detrended data), or more integrated metrics such

as Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) coefficients. However, deseasonalizing and detrending500

rely on assumptions, like a fixed seasonal cycle or linear trend. These assumptions can introduce errors, especially in complex,

nonlinear, or non-stationary systems (Nie et al., 2024). Removing information based on such assumptions effectively inserts

distortions into the data, which can significantly affect the validation results. For instance, nonstationary TWS changes, driven

by climate change and human activities, are increasingly prevalent (Rodell et al., 2018; Humphrey et al., 2016; Nie et al.,

2024). In such a context, validation strategies may consider robustness and flexibility on data distribution assumptions. For505

instance, some studies (Kumar et al., 2018) apply information theory (Shannon, 1948) to assess whether the model captures

inherent variability and randomness in observations without assuming linearity or stationarity.

Another emerging focus is evaluating whether GRACE/-FO DA enhances the representation of extreme events like droughts

and floods (Houborg et al., 2012; Reager et al., 2015; Li et al., 2019; Jung et al., 2019; Khaki et al., 2023). However, validating

drought performance is challenging due to differences in propagation times and speeds across indicators. For example, vali-510

dating a TWS-based drought indicator using a vegetation or precipitation-based drought indicator is difficult, as each responds

differently to drought conditions over space and time. Furthermore, establishing a consistent ground truth for droughts is com-

plicated due to human activities. For instance, during a severe drought, responding with increased irrigation may maintain soil

moisture levels, making soil moisture-based drought indicators less representative of actual drought conditions.

Overall, the design of validation depends on the goal of the application, reasonable assumptions regarding the properties of515

the variable of interest, and the availability of reliable observational data. A non-exhaustive list of commonly used datasets,

variables, and metrics in GRACE/-FO assimilation validation can be found in Table 3.
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Table 3. Non-exhaustive list of commonly used datasets, variables, metrics and exemplary references in GRACE/-FO assimilation validation.

Abbreviations: SCAN: Soil Climate Analysis Network, USCRN: United States Climate Reference Network, ISMN: International Soil Mois-

ture Network, NASMD: North American Soil Moisture Database, ESA CCI: European Space Agency Climate Change Initiative, ASCAT:

Advanced Scatterometer, SMOS: Soil Moisture and Ocean Salinity, SMAP: Soil Moisture Active Passive, USGS: United States Geologi-

cal Survey, NSW: New South Wales, CMC: Canadian Meteorological Centre, GHCN: Global Historical Climatology Network, SNODAS:

Snow Data Assimilation System, GRDC: Global Runoff Data Centre, LEGOS: Laboratoire d’Etudes en Géophysique et Océanographie

Spatiales, ALEXI: Atmosphere-Land Exchange Inverse model, MODIS: Moderate-resolution Imaging Spectroradiometer, GLEAM: Global

Land Evaporation Amsterdam Model, USDM: United States Drought Monitor, NDVI: Normalized Difference Vegetation Index, FDM: Flood

and Drought Monitor, SPI: Standardized Precipitation Index, GNSS: Global Navigation Satellite System, R: Correlation, ubRMSD: unbiased

Root Mean Square Difference, RMSE: Root Mean Square Error, MAE: Mean Absolute Error, RMSD: Root Mean Square Difference, NSE:

Nash-Sutcliffe Efficiency, KGE: Kling–Gupta Efficiency

Validation Target Source of Reference Dataset Validation Metrics References

Surface/Root-zone

Soil Moisture

SCAN, USCRN, Australia in situ

(OzNet, OzFlux, CosmOz), ISMN,

NASMD, ESA CCI, ASCAT, SMOS,

SMAP

R, ubRMSD, bias, RMSE,

Triple Collocation, First

Order Reliability Measure

Houborg et al. (2012), Girotto et al. (2019),

Tian et al. (2017), Kumar et al. (2016),

Khaki et al. (2023), Zhao and Yang (2018),

Nie et al. (2019), Jung et al. (2019), Soltani

et al. (2024)

Groundwater

Storage / Level

USGS, Illinois Water State Survey,

Australia Groundwater Explorer, NSW

groundwater archive, Central Ground

Water Board of India

R, Anomaly R, TheilSen

Slope, RMSE, Taylor Dia-

gram

Zaitchik et al. (2008), Houborg et al.

(2012), Reager et al. (2015), Girotto et al.

(2017), Kumar et al. (2016), Tian et al.

(2017), Li et al. (2019), Getirana et al.

(2020b)

Snow Water Equiv-

alent / Snow Depth

CMC, GHCN, SNODAS, Copernicus

SWE dataset

MAE, R, RMSE Su et al. (2010), Forman et al. (2012), van

Dijk et al. (2014), Kumar et al. (2016), Zhao

and Yang (2018), Bahrami et al. (2021),

Khaki et al. (2023)

Runoff / Stream-

flow

GRDC, USGS discharge, Water Survey

of Canada, Global River Flow and Con-

tinental Discharge Dataset

MD, RMSD, ubRMSD, R,

Anomaly R, NSE, KGE

Forman et al. (2012), Li et al. (2012),

Bahrami et al. (2021), Wu et al. (2022),

Khaki et al. (2023)

River Water Level LEGOS Hydroweb rank R van Dijk et al. (2014)

Evapotranspiration ALEXI, FLUXNET, MODIS (Univer-

sity of Washington, MOD16), OzFlux,

GLEAM

RMSE, TheilSen Slope Kumar et al. (2016), Tian et al. (2017),

Girotto et al. (2017), Nie et al. (2019),

Khaki and Awange (2019)

Drought Extremes USDM, MODIS NDVI, African FDM,

SPI

R, rank R, percentile-based

drought categories

Houborg et al. (2012), Li et al. (2012), Li

et al. (2019)

TWSA GNSS measurements of vertical elastic

loading

R, RMSE, power spectral

analysis

Tangdamrongsub and Šprlák (2021), Klos

et al. (2021), Gerdener et al. (2023)
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4.2 Impact of GRACE/-FO DA on model variables

The impact of GRACE/-FO DA on hydrological processes varies with spatial scales, simulated storage components, and ex-

ternal factors on water storage dynamics such as human impacts. An improved performance is especially present in large river520

basins where natural variability dominates (Humphrey et al., 2023). Challenges in model-only simulations include underesti-

mated amplitudes and seasonal dynamics of TWS due to model parametrization (Schellekens et al., 2017) and underestimated

trends and variabilities due to uncertainties in meteorological forcings (Tang et al., 2020). GRACE/-FO DA has proven effec-

tive in addressing these issues, improving correlation and long-term trends in storage components such as groundwater and

soil moisture with respect to observation-based datasets across various basins (Zaitchik et al. (2008); Li et al. (2012); Li et al.525

(2019); Kumar et al. (2016); Schumacher et al. (2018); Tangdamrongsub et al. (2018)). These improvements underscore the

value of GRACE/-FO in capturing large-scale hydrological variability. However, the impact on other storage components, such

as SWE, is often mixed. SWE performance, for example, may degrade, as GRACE/-FO lacks the resolution to capture local

snow dynamics for reliable spatiotemporal scaling and mass redistribution. Mass tends to shift incorrectly from SWE into

other water components, dampening runoff responses and misrepresenting hydrological flows (Su et al. (2010); Forman and530

Reichle (2013); Zhao and Yang (2018)). Beyond storage components, the effects of GRACE/-FO DA on fluxes like ET and

runoff remain less consistent (Springer (2019); Nie et al. (2019); Chen et al. (2021)). For example, a model might overestimate

groundwater storage but underestimate baseflow; when GRACE/-FO DA decreases groundwater, it exacerbates the baseflow

deficiency. Or a model might not simulate groundwater pumping for irrigation; GRACE/-FO DA will decrease groundwater

and thereby erroneously decrease ET (Girotto et al., 2017). In potential applications of GRACE/-FO DA for surface and/or sub-535

surface components in coupled Earth System Models, such misrepresentations could degrade land-atmosphere or land-ocean

feedbacks.

GRACE/-FO DA has also proven effective in capturing large scale droughts (Li et al. (2019); Rodell and Li (2023)) and floods

(Reager et al. (2015); Khaki et al. (2023)). It has been effectively utilized in drought monitoring systems, such as the U.S.

Drought Monitor (Houborg et al., 2012). However, GRACE/-FO DA still tends to underestimate extreme intensities and is540

limited in representing events that occur rapidly with short duration, such as flash floods, due to its coarse temporal and spatial

resolution (Section 5).

In regions with intensive human water management practices, such as those relying on groundwater pumping for irrigation, as-

similating GRACE/-FO can improve groundwater trends but may degrade other variables such as ET (Girotto et al. (2017); Li

et al. (2019)) and degrade storage forecast skill (Getirana et al., 2020b) if such human impact is not explicitly represented by the545

model. Nevertheless, the potential of GRACE/-FO DA for improving groundwater monitoring and informing decision-making

processes has been indicated by several studies (Zaitchik et al. (2008); Li et al. (2019)).
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4.3 Validation challenges and best practices

It is essential that spatial scale mismatch is resolved for meaningful validation. While in-situ stations provide measurements

of storage changes or fluxes at point scale, model simulations are conducted on much broader scales. Additionally, given the550

coarse temporal and spatial resolution of GRACE/-FO TWSA, improvements or degradations due to the assimilation compared

to in-situ station data have to be interpreted cautiously. Strategies such as averaging or interpolating could be used when in situ

measurements are densely available to obtain a broader representation of measured storage changes and fluxes.

Alternatively, many studies also set certain criteria to select representative sites to approximate basin or grid-level variability

(De Lannoy et al., 2007). Careful assumptions need to be made when key data is missing or limited. For instance, groundwater555

observations are usually available as groundwater level changes. Specific yield needs to be used to convert it into groundwater

storage in order to be able to compare it with model simulation. The information on specific yield is often only available at

sparse sites or even unavailable, introducing further uncertainties into the validation (Khaki et al., 2017a). Additionally, quality

control and data cleaning are recommended for validation as in situ data is also prone to missing periods or poor-quality mea-

surements (van Dijk et al., 2014). If scale mismatches cannot be fully addressed, point-scale comparisons should be interpreted560

cautiously.

With the rise of remotely sensed products, many studies use these datasets for GRACE/-FO DA validation (Kumar et al.,

2016; Zhao and Yang, 2018; Khaki et al., 2019; Jung et al., 2019). However, large uncertainties and inconsistencies between

reference datasets can complicate meaningful comparisons (van Dijk et al., 2014). In such cases, validation strategies must

account for uncertainties and systematic differences from both model outputs and reference datasets. Metrics that help manage565

discrepancies between datasets by explicitly accounting for uncertainties could be adopted in such cases as triple collocation

(Gruber et al., 2016).

When GRACE/-FO DA is applied in regions with significant human water management, model state variables that are directly

updated through assimilation such as soil moisture and groundwater tend to improve remarkably (Girotto et al., 2019; Tang-

damrongsub et al., 2020), but the impact on other processes like runoff or ET remains challenging. Among these processes,570

runoff and streamflow have received considerably more attention than vegetation-related processes like ET and carbon fluxes.

Including them in evaluations is equally important to ensure a more comprehensive understanding of model behavior and to

better reflect the interconnected nature of hydrological and ecological processes.

In multi-sensor assimilation settings, the role of GRACE becomes less straightforward by only comparing the hydrological

states and fluxes. Analyses of the Kalman Gain matrix or assimilation increments offer deeper insights into how mass moves575

within the system. For example, Girotto et al. (2019) observed that storage increments from GRACE TWSA and SMOS soil

moisture were negatively correlated.

Lastly, because neighboring grid cells are spatially correlated for GRACE/-FO data, this dependency propagates through DA
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outputs. Therefore, validation strategies must avoid treating adjacent grid cells as independent and carefully interpret regional

behavior in a spatially coherent manner (Humphrey et al., 2023).580

5 Current challenges and open issues

TWS processes possess unique dynamics and characteristics such as their lagged responses to atmospheric effects (precipitation

and ET). These properties present challenges to DA techniques which were originally designed for linear processes. Here, we

discuss a wide range of issues and challenges, most of them are unique to GRACE/-FO DA, and have not been fully explored

in past studies.585

5.1 Unmodeled TWS processes

GRACE/-FO observes the entire sum of TWS changes, but models do not simulate all relevant storage compartments, for

example some models do not simulate reservoirs, lakes and glaciers (Section 2.1). As a result, DA may inadvertently integrate

these mass change signals into the TWS compartments that are simulated. It is therefore crucial to correct GRACE/-FO ob-

servations for these signals before DA (Section 2.3 and 2.5). We hope that with improving remote sensing capabilities, e.g.590

from the SWOT mission, the data base for such corrections will grow significantly. Future versions of hydrological models and

LSMs might also take into account improved representation of other processes, e.g. in soil hydraulics (Vereecken et al., 2022).

In regions with significant human impacts on the water cycle, explicitly representing human water use in models helps to en-

sure realistic distribution of observed mass changes among the storage components (Nie et al., 2019). However, representing

human water use in models is limited by the availability, and the spatial and temporal resolution of water use data. Another595

possible strategy is to assimilate GRACE/-FO data simultaneously with other observational datasets to better constrain the

human-affected water budget (Tian et al., 2017; Zhao and Yang, 2018; Girotto et al., 2019; Tangdamrongsub et al., 2020;

Khaki et al., 2020; Nie et al., 2024; Schulze et al., 2024). However, efforts are still needed to understand and resolve signal

conflicts and improve the quantification of uncertainties.

5.2 Computation of innovations600

Innovations – the differences between model predictions and observations – can be computed either at the resolution of the

observations or at the resolution of the model. Both approaches are used in current GRACE/-FO DA frameworks, each with its

own advantages and challenges.

5.2.1 DA with innovations at the observation resolution

When computing innovations at the spatial and temporal resolution of the GRACE/-FO TWSA observations, all relevant605

storage compartments within the model grid cells corresponding to a given observation grid cell are aggregated (Section 3.5).

When applying an EnKF without applying any localization for the entire globe, where a single high-dimensional state vector
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represents the entire model domain, DA at the resolution of the observations would be an ill-posed problem. The combination

of limited observational constraints and the high dimensionality of the forecast state vector leads to a rank-deficient system,

making it difficult to derive unique and stable state updates. Incorporating full observation error covariance matrices can610

introduce further numerical instability (Eicker et al., 2014; Gerdener et al., 2023). Therefore, many studies parallelize the

problem into updates to individual state vectors for each local model domain or grid cell (Khaki et al., 2017c; Girotto et al.,

2019; Springer et al., 2019; Wang et al., 2021) – thereby improving overall system stability by removing spurious long-range

correlations. This strategy is also discussed in the context of domain localization in Section 3.2.

Assimilation at the observation resolution enables the DA algorithm to disaggregate information from the observations onto615

the finer model grid, effectively using DA as a downscaling approach in which the finer-scale patterns are informed by the

model. For large study areas, especially in high-resolution and highly parallelized models, this downscaling can involve quite

some communication between processes.

5.2.2 DA with innovations at the model resolution

After a priori interpolation of observations to the model grid, they can be assimilated directly for each model grid cell, which620

reduces computational complexity (Nie et al., 2019). With a one-to-one relationship between an observation and the state vec-

tor of a single model grid cell, this approach can be considered as an extreme case of localization, where all spatial correlations

between model grid cells and between model and observations are suppressed. This approach also allows easy code paralleliza-

tion and efficient GRACE/-FO DA in an operational setting.

However, this approach has its own drawbacks. When coarse-scale GRACE/-FO observations are applied directly to finer625

model grid cells without any pre-spatial downscaling and without applying variable observation errors, the spatial details of

simulated TWS are inevitably smoothed out; in regions with complex terrains, this may suppress the dynamic range of TWS

at high-elevations while amplifying it in adjacent low-elevation grid cells as shown in Figure 4.

More importantly, GRACE/-FO DA at the model resolution can lead to GRACE/-FO observed mass changes leaking into

unintended areas. For instance, mass change signals related to seasonal snowpack in the Rocky Mountains of the U.S. may630

incorrectly spread eastward into the plains with this DA approach, while the reverse is also true, resulting in underestimated

TWS amplitude in the front range (Fig. 4). Similarly, mass change signals from large surface water bodies such as lakes and

reservoirs can be inadvertently distributed to surrounding areas if these signals are not properly managed prior to GRACE/-FO

DA.

5.3 Non-Gaussian behaviors of TWS processes635

A fundamental assumption for the EnKF and EnKS is that forecast errors are Gaussian, which is needed to achieve optimal

output, i.e., minimized estimation errors. However, this assumption is frequently violated by TWS processes (soil moisture,

groundwater and snow), degrading the effectiveness of GRACE/-FO DA for constraining these processes. Soil moisture typ-
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  Figure 4. Spatial maps of TWSA from the CLSM model only (open loop), GRACE DA into CLSM and GRACE for a U.S. western region

centered around Colorado in April 2006 (panels a, b and c); TWSA time series during 2003-2007 for locations A and B (panels d & e).

CLSM refers to the NASA Catchment LSM. Further details on CLSM and this GRACE DA simulation can be found in(Li et al., 2019)

ically exhibits a skewed distribution near its two bounds, the wilting point and saturation (Li and Rodell, 2013). As a result,

ensemble spreads must be kept small in both dry and wet soil moisture ranges, limiting the ability of GRACE/-FO DA to640

improve soil moisture in extreme conditions.

SWE is known to follow a log-normal distribution and thus, perturbation errors added to SWE states are generated in log-normal

space. When these errors are transformed back to normal space, the zero-mean errors become biased, with greater biases for

larger SWE estimates. While reducing perturbation errors can mitigate biases, it also limits the usefulness of GRACE/-FO DA

in improving SWE estimates, especially in high mountain regions (Li et al., 2019).645

Groundwater storage is practically unbounded and is expected to behave as a Gaussian process (Li et al., 2015). However, non-

linear model physics can introduce biases to simulated groundwater. In particular, groundwater recharge is often calculated

as a power function of soil moisture (Niu et al., 2011). Since power functions are highly skewed, the ensemble recharge is

inevitably biased even with an unbiased soil moisture ensemble, resulting in a biased groundwater ensemble (Ryu et al., 2009).

Ensemble biases in groundwater can persist for months due to groundwater’s long memory, especially in models that simulate650

limited two-way interactions between soil moisture and groundwater and during prolonged dry seasons.

Since groundwater controls baseflow generation, biases in groundwater can propagate into simulated runoff similar to that from

soil moisture to moisture fluxes (Ryu et al., 2009). While soil moisture, groundwater and snow estimates are still constrained
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by GRACE/-FO observations despite their respective biases, ensemble biases in runoff can go unchecked because runoff is not

constrained by any observations in a typical GRACE/-FO DA framework, potentially leading to erroneous conclusions. For655

example, in a model that underestimates baseflow, increases in baseflow from GRACE/-FO DA may give an appearance that

the improvement is due to GRACE/-FO DA, while, in fact, the increased runoff is caused by ensemble biases. Therefore, it is

crucial to evaluate ensemble biases in fluxes, particularly when they are the primary focus for improvement.

5.4 Others

The effects of the issues described above are unevenly distributed across different climates and regions, often with larger660

impacts in wet climates than in dry climates (Li et al., 2019). This is likely since ensemble spreads in wetter conditions can

be increased through perturbation errors added to precipitation while they remain small in dry climates due to lack of rainfall

(Section 3.4). Ensemble spreads may be strongly affected by model physics as well. For a model with a strong tendency for

ET, ensemble spreads may not be able to sustain in a dry climate where all available soil moisture is used for ET quickly.

Conversely, when a modeled state has minimal interaction with other processes, ensemble spreads may grow unchecked with665

time if perturbation errors are added continuously. This is especially true for groundwater in a dry climate where baseflow and

the capillary rise is naturally low, leading to weak groundwater dynamics.

In addition to the non-Gaussian behaviors discussed above, GRACE/-FO DA (and most other DA) for state updating violates

the water balance (Li et al., 2012; Schumacher, 2016). Furthermore, model skill (e.g., bias) in simulating fluxes may be anti-

correlated with skill in simulating states (Section 4.2), because GRACE/-FO DA updates may push TWS in a direction opposite670

to what would have been needed to treat the underlying errors in the simulated fluxes (Schulze et al., 2024). This is a motivation

for developing new DA techniques that adjust TWS while maintaining water balance by adjusting the fluxes instead of the states

(Girotto et al., 2021).

All DA frameworks require a faithful representation of forecast and observation errors. For GRACE/-FO DA this means

estimates of the error variances and spatial covariances for TWSA maps (Section 2.2 and 3.4). However, even after two675

decades of analyzing GRACE/-FO observations, the error structure of Level-2 SH data products is not well understood, and in

particular, error correlations due to mis-modelled short-term mass variations (i.e. aliasing errors) are not represented in current

approaches. The reason for this is that on one hand we have only few independent datasets to calibrate GRACE/-FO error

representations, and on the other hand it appears challenging to quantify the errors in Level-2 and -3 data (including mascon

representations) that are injected via incorrect atmospheric and oceanic non-tidal and tidal background models (Shihora et al.,680

2024), and that seem to dominate over satellite instrument errors. We suggest that for future missions full error covariance

matrix representations becomes part of the official products, even if it would represent only the dominating patterns of error

correlation in space. We notice that several groups have assessed the propagation of background model errors through Monte

Carlo simulation (Flechtner et al., 2016); however it would be desirable if (1) background model ensembles used in these

approaches would seek to span complete understanding of model errors (i.e. rely on independent datasets and reanalyses), and685
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(2) such efforts aim to provide full-rank error variance-covariance matrices to the community instead of the rank-defect sample

covariance matrices.

6 Future directions

Recent research discussed in Section 3 primarily focuses on current DA strategies, whereas Section 5 highlight the associated

challenges with some suggestions to advance DA algorithms via e.g. multi-sensor DA and better water balance closure. This690

Section focuses on potential future directions that can open up through new satellite gravimetry observations or data products.

6.1 Key strategies to increase the DA value of gravity data

To address the challenges in GRACE/-FO DA using currently available tools and data, we propose two key strategies. First,

further enhancing the spatial resolution of GRACE/-FO products prior to DA could greatly benefit the use of TWSA retrievals.

Beyond relying on future higher-resolution gravity missions, the most intuitive approaches remain to downscale GRACE/-FO695

products within dynamic DA schemes (Girotto et al., 2021; Forman and Reichle, 2013; Reichle et al., 2014), using auxil-

iary datasets and advanced statistical methods (Vishwakarma et al., 2021b; Tourian et al., 2023) or deep learning techniques

(Seyoum et al., 2019; Foroumandi et al., 2023; Gou and Soja, 2024). Perhaps a combination of deep learning and dynamic

downscaling in a hybrid DA scheme offers new perspectives. Second, improving the hydrological consistency in GRACE/-FO

DA is essential. On the one hand, further development of DA systems is needed, including refined error assumptions that700

better describe the relevant variables, enforced physical constraints on water balance closure, improved representation of un-

certainties, and reduced bias for both model and observations. For instance, Gou and Soja (2024) introduced a self-supervised

DA workflow that ensures water balance closure in small basins while preserving large-scale accuracy inherited from the

GRACE/-FO measurements. On the other hand, domain knowledge of the underlying drivers of GRACE/-FO signals can help

in parameterizing relevant processes in models, enabling more accurate water redistribution across storage components, which705

in turn enhances the estimates of relevant fluxes. This includes better representation of lake, reservoir, and glacier dynamics as

well as anthropogenic water activities. Alternatively, regularly updated correction dataset can be developed to remove signals

in TSWA observations that cannot be represented by GHMs or LSMs.

6.2 Low latency TWSA product DA

As noted previously, assimilating standard GRACE/FO products, which are delivered weeks to months after observation, limits710

their value for near-real-time DA applications. Low-latency gravity products would offer a solution despite higher errors from

automated processing. Latency is influenced by the observational averaging window, with a monthly mean product having a

minimum latency of two weeks, assuming an effective date at mid-month. Alternatives, such as 21-day rolling window products

updated daily or weekly (Sakumura et al., 2016), reduce latency to as little as 11 days while enabling more frequent updates

in the DA scheme. However, since each rolling window field shares data with previous and subsequent fields, assimilating715

all fields without properly increasing observational uncertainty may over-constrain the model (i.e., put too much weight on
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the observations relative to the simulated states). Additionally, shorter averaging windows improve latency but degrade the

effective spatial resolution of TWSA retrievals, which can negatively impact DA accuracy (Section 3.3). Gouweleeuw et al.

(2018) and Retegui-Schiettekatte et al. (2025) demonstrated that daily GRACE solutions from a Kalman filter approach could

resolve major flood events in the Ganges-Brahmaputra delta, but these are among the largest signals that we observe worldwide.720

Low latency products will be essential for optimizing the value of satellite gravimetry DA for operational applications, but only

if these issues are carefully managed. One option could be integrating TWSA forecast approaches on the basis of ML with data

assimilation (Li et al., 2024, 2025).

6.3 Line-of-sight gravity measurement DA

Another approach to addressing the limited spatial resolution is the direct DA of higher-frequency LGD data into GHMs and725

LSMs (Soltani et al., 2021). This approach offers the potential for improved temporal resolution and a deeper understanding

of rapid mass transport processes such as floods, droughts and human water management activities (Han et al., 2005, 2006;

Banerjee and Kumar, 2019). In contrast to monthly Level-2 or -3 products, LGD measurements capture instantaneous changes

in gravitational acceleration between the two GRACE/-FO satellites as they orbit Earth (Khaki et al., 2023). Thus, LGD data

provide information on gravity variations at much higher frequencies, potentially revealing submonthly mass changes. Directly730

assimilating LGD measurements also reduces temporal aliasing, leading to a more accurate representation of hydrological pro-

cesses in models. Furthermore, the high temporal resolution of LGD measurements opens up possibilities for near-real-time

applications, such as flood forecasting and drought monitoring. In a recent study, Khaki et al. (2023) presented a new method-

ology based on the direct assimilation of LGD measurements from the GRACE-FO laser ranging interferometer (LRI) into an

LSM using the EnKF. They showed that the new approach not only offers improved accuracy when compared to independent735

measurements but also performs better in capturing high-frequency water storage variations imposed by submonthly climatic

events due to its higher number of DA cycles within a month.

Despite the potential benefits, assimilating LGD measurements presents challenges, for example, these measurements are in-

herently noisier. Data processing and noise reduction are crucial to extracting meaningful geophysical signals and efficiently

incorporating GRACE/-FO daily products into the models (Khaki et al., 2023). Additionally, assimilating high-frequency LGD740

measurements demands significant computational resources, necessitating efficient DA algorithms. Furthermore, GHMs and

LSMs need to be sophisticated enough to represent the relevant processes at those scales, potentially requiring refined model

structures, improved parameterizations, and the incorporation of additional data sources. Nevertheless, there have been recent

attempts that have demonstrated the potential of assimilating LGD measurements for various applications, including hydrolog-

ical modelling and ongoing research for ice mass balance assessment, and earthquake and volcano monitoring.745

6.4 GRACE-C, NGGM and future gravimetry missions

GRACE-FO, which launched in 2018, is unlikely to equal GRACE in providing useful observations for 15 years. Errors

associated with the accelerometer data transplant (which mitigates the impact of a faulty accelerometer on one of the two
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GRACE-FO spacecraft) will be exacerbated as the satellites’ altitudes decay during the current solar maximum (Wiese et al.,

2022; Harvey et al., 2022). Larger errors will pose a new challenge for DA. Fortunately, the NASA/German GRACE Continuity750

(GRACE-C) mission, with observational capability nearly identical to its predecessors (Wiese et al., 2022), is planned to launch

in 2029. This should enable continuity of satellite gravimetry observations through at least 2034 (given a 5-year design lifetime)

or up to a decade longer.

Further, ESA’s Next Generation gravity Mission (NGGM, Haagmans et al., 2020; Massotti et al., 2021; Cesare et al., 2022) is

currently in phase B development and foreseen for launch in 2032, most likely in an inclined orbit, complementing GRACE-755

C’s polar orbit to what is known as ’Bender constellation’. NGGM will be again equipped with a laser ranging instrument and

electrostatic accelerometers.

Combining measurements from the two missions, as proposed by the ESA/NASA MAss Change and Geosciences International

Constellation (MAGIC) Working Group (Daras et al., 2024), would enable substantial improvements in spatial and/or temporal

resolution relative to a single pair gravimetry mission with an equivalent level of uncertainty (Heller-Kaikov et al., 2023; Daras760

et al., 2024; Kusche et al., 2025). This is expected due to potentially reduced effects of temporal aliasing in the Level-2 data

generation, and thus potentially being less reliant on background models and post-processing methods. If MAGIC comes to

fruition, it could thus help to overcome some of the DA issues described earlier, including tradeoffs between latency and

accuracy and degradation of model output where high-resolution TWS signals exist. Experiments will be needed to confirm

that assimilating a single MAGIC product generates better results than separately assimilating GRACE-C and NGGM products.765

6.5 SLR-based TWSA product DA

GRACE was the first satellite mission dedicated to measuring the time-varying gravity field (Wahr et al., 1998), but ground-

to-satellite laser ranging (SLR) measurements captured low-degree temporal variations in the gravity field as far back as 1975

(Cox and Chao, 2002; Flechtner et al., 2021). By 1993, SLR satellites and observations were sufficient to derive mass change

time series with subcontinental scale resolution. At continental to global scales, SLR based TWSA time series compare favor-770

ably with those from GRACE/-FO (Rodell et al., 2024). Assimilating SLR data into a LSM would entail the same challenges

as GRACE/-FO DA but greatly magnified due to the extremely coarse spatial resolution.

Simulations suggest (Najder et al., 2023) that adding new SLR satellites could help in improving the accuracy of low-degree

spherical harmonic solutions and remove error correlation with Earth Orientation Parameters (EOP) and site coordinates, how-

ever, this would likely not dramatically improve resolution. Also, alternative approaches such as fitting GRACE/-FO-derived775

TWSA Empirical Orthogonal Functions (EOFs) directly to SLR ranges showed a promising effect on resolution (Löcher and

Kusche, 2021; Cheng and Ries, 2023), but they rely on the hypothesis that the main spatial patterns of TWSA variability

did not change significantly during past decades. Nevertheless, considering that most models struggle to simulate large-scale

TWS changes accurately and consistently across global, multi-decadal timescales (Scanlon et al., 2018), the effort may be

worthwhile if done properly.780
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6.6 TWS products based on inversion of GNSS time series

Time series of GNSS vertical land motion have been used for validating GRACE/-FO-derived TWSA products as well as

DA-derived TWSA maps (Springer et al., 2019; Gerdener et al., 2023). Observed vertical land motion can be related to mass

redistribution data through elastic loading theory and assumptions on reference frame realization (van Dam and Wahr, 1998;

Blewitt, 2003). Various regional and global TWSA datasets have been derived experimentally from GNSS network or Precise785

Point Positioning (PPP) timeseries (see review in White et al., 2022), but this approach suffers usually from heterogeneous

station density and it is challenging to resolve loading signals beyond the seasonal cycle (Rietbroek et al., 2014). It has been

further suggested that combining GNSS vertical land motion with InSAR and GRACE/-FO data enables one to isolate ground-

water decline and recharge from TWSA (Carlson et al., 2024) in an inverse approach. Investigations would be required to

understand if GNSS and InSAR data could be useful in joint GRACE/-FO DA systems.790

7 Synthesis

The growing number of GRACE/-FO DA studies reflects the increasing interest in these frameworks for a wide range of

applications, but it also reveals a variety of methodological choices and a lack of coordinated direction. This paper compiled

insights from existing studies and discussed the strengths and limitations of different approaches, with the aim of providing

best practice recommendations for GRACE/-FO DA. In summary, we have identified key methodological components that795

require further standardization and community consensus:

1. GRACE/-FO postprocessing: Gridded TWSA observations obtained from either SH or mascon solutions need to be

carefully corrected for geophysical signals that are not represented in the GHMs and LSMs prior to DA – a standard

correction dataset is still missing. All GRACE/-FO products require bias correction, at least by aligning the long-term

mean with the model. Depending on the application, this may also involve matching higher-order statistical moments or800

applying multiplicative gain factors to restore signal loss introduced during post-processing. Where possible, spatially

distributed observation errors – ideally derived from full covariance matrices – should be accounted for. With upcoming

missions such as GRACE-C and NGGM, the availability of standardized Level-3 products and reliable error estimates is

expected to enhance consistency in postprocessing.

2. Model and process description including error modeling: Successful GRACE/-FO DA depends, to some extent, on805

the physical realism of the underlying model. Although GRACE/-FO DA can introduce water storage signals that are

not explicitly represented by a numerical models – such as those from groundwater abstraction – doing so without

corresponding process representation may lead to imbalances or degradation of other model variables. Therefore, it is

essential to explicitly incorporate key anthropogenic processes into the model in order to fully exploit the information

provided by GRACE/-FO observations. Additionally, providing a realistic representation of model forecast uncertainty,810

ideally informed by prior sensitivity studies, is crucial, particularly for the vertical disaggregation of GRACE/FO signals

across storage compartments.
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3. DA strategy including algorithms and tuning: In terms of the assimilation algorithm, EnKF and EnKS are typically

used, and square root variants are generally preferred due to their enhanced numerical robustness. Localization remains

essential in GRACE/-FO DA, particularly for higher-resolution observation grids. Furthermore, spatial correlations be-815

tween observations should be explicitly considered. In order to preserve spatial detail and enable effective horizontal dis-

aggregation, it is preferable to compute innovations at the resolution of the observations. The state vector should include

all storage compartments targeted for the vertical disaggregation of GRACE/-FO observations. Currently, it is standard

practice to assimilate monthly products. When temporally downscaled products are used for specific applications, care-

ful attention should be paid to error propagation and to potential issues arising from strong temporal correlations in the820

downscaled fields. Finally, assimilation increments are best applied by rewinding and reintegrating the model over the

same month again to maintain temporal consistency – though this may become less critical with the improved temporal

resolution of future mission products.

While past studies offer valuable insights, future work should focus on establishing a set of standards to make GRACE/-FO

DA experiments more comparable, reproducible and interpretable, so that DA results can clearly be attributed to signals in825

the water cycle rather than to differences in methodology. Firstly, we propose defining a standardized benchmark experiment

for GRACE/-FO DA. This benchmark should specify the GRACE/-FO data products and associated error assumptions, study

area(s), meteorological forcing data, LSMs or GHMs, error modeling approaches, and assimilation strategies. It should be

designed to isolate and quantify the impact of each of these components on the DA results. Second, the community must agree

on a core set of performance metrics and validation data sets. This includes not only comparison to in situ observations but830

also ensemble spread diagnostics, water balance checks, and analysis of assimilation increments. This could be supported by

community diagnostics following the example of the Earth System Model Evaluation Tool (ESMValToo). Third, we urge the

formation of an intercomparison initiative similar to the Land Surface, Snow and Soil Moisture Model Intercomparison Project

(LS3MIP), to systematically test and compare GRACE/-FO DA systems. Such an effort, potentially hosted under the umbrella

of, e.g, the Global Energy and Water Exchanges (GEWEX) program, would provide a controlled, transparent framework for835

evaluating the influence of key choices in data, models, and methods through multi-group collaboration.
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