Supplementary information of

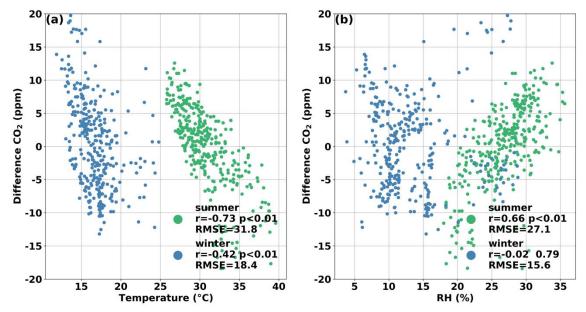
## A 30-month Field Evaluation of Low-Cost CO<sub>2</sub> Sensors Using a Reference Instrument

Qixiang Cai<sup>1,2</sup>, Ning Zeng<sup>3\*</sup>, Xiaoyu Yang<sup>4</sup>, Chi Xu<sup>5</sup>, Zhaojun Wang<sup>4</sup>, Pengfei Han<sup>6,7\*</sup>

<sup>1</sup>State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

<sup>2</sup>Qiluzhongke Institute of Carbon Neutrality, Jinan 250100, China

<sup>3</sup>Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA


<sup>4</sup>Shandong Jinan Ecological and Environmental Monitoring Center, Jinan 250102, China

<sup>5</sup>State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Bejing 100012, China

<sup>6</sup>State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

<sup>7</sup>Carbon Neutrality Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Correspondence to: Pengfei Han (pfhan@mail.iap.ac.cn); Ning Zeng (zeng@umd.edu)



**Figure S1.** Temperature (a) and relative humidity (b) dependence of  $\Delta CO_2$ . For SENSE-IAP at Beijing site from July 13<sup>th</sup> to 27<sup>th</sup> in 2022 (summer in green) and January 10<sup>th</sup> to 24<sup>th</sup> in 2023 (winter in blue).

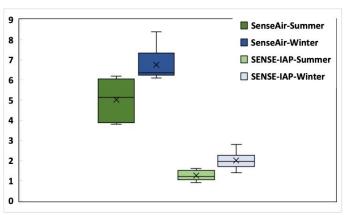
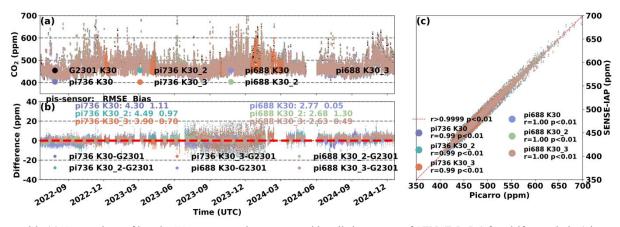
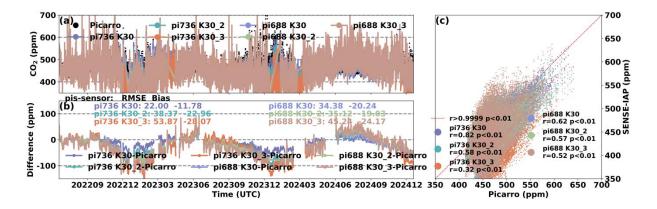





Figure S2. Comparation of both raw CO2 data form SenseAir (dark) and environment corrected SENSE-IAP (light) with Picarro in summer (July 13th to 27th in 2022, green) and winter (January 10<sup>th</sup> to 24<sup>th</sup> in 2023, blue). Box plot include the RMSE for all six sensors at Beijing site.



**Figure S3:** (a) Comparison of hourly CO<sub>2</sub> concentrations measured by all six sensors of SENSE-IAP (after drift correlation) in two instruments and Picarro system at Beijing-IAP from June 2022 to Dec 2024, (b) the time series of  $\triangle CO_2$ , (c) scatter plot of SENSE-IAP and Picarro.



**Figure S4:** (a) Comparison of hourly CO<sub>2</sub> concentrations measured by all six sensors of raw signal in two instruments and Picarro system at Beijing-IAP from June 2022 to Dec 2024, (b) the time series of  $\triangle CO_2$  through a 24-hour running mean, (c) scatter plot of raw signal and Picarro.

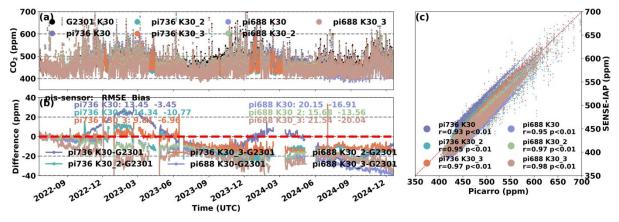
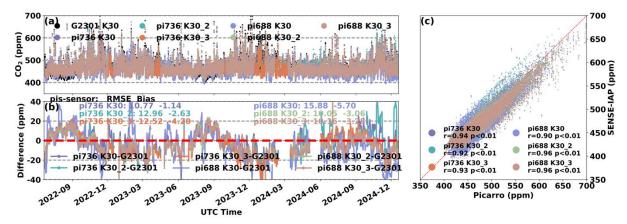
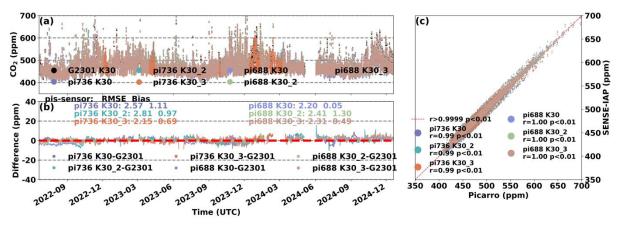





Figure S5: (a) Comparison of hourly CO<sub>2</sub> concentrations measured by all six sensors of SENSE\_IAP in two instruments and Picarro system at Beijing-IAP from June 2022 to Dec 2024, (b) the time series of  $\triangle CO_2$  through a 24-hour running mean, (c) scatter plot of SENSE\_IAP and Picarro.



**Figure S6:** (a) Comparison of hourly CO<sub>2</sub> concentrations measured by all six sensors of SenseAir in two instruments and Picarro system at Beijing-IAP from June 2022 to Dec 2024, (b) the time series of  $\triangle CO_2$  through a 24-hour running mean, (c) scatter plot of SenseAir and Picarro.



**Figure S7:** (a) Comparison of hourly CO<sub>2</sub> concentrations measured by all six sensors of SENSE-IAP (after drift correlation) in two instruments and Picarro system at Beijing-IAP from June 2022 to Dec 2024, (b) the time series of  $\triangle CO_2$  through a 24-hour running mean, (c) scatter plot of SENSE-IAP and Picarro.