
It was a please to read the manuscript on “Modelling runoff in a glacierized catchment: the role 
of forcing product and spatial model resolution”. The study analyzes model performance as a 
function of spatial resolution of the modeling domain and the choice of the precipitation 
products. The findings of the study are essential for finding optima between computational effort 
and minimum resolution needed for accurate glacio-hydrological simulations. The manuscript is 
well-structured and is well-written. 

I appreciate that the authors have distinguished between spatial resolution of input data (i.e., 
precipitation) and resolution of model elements. However, I find that the effect of precipitation 
resolution is not well isolated in this study as it compares two things simultaneously, namely 
different source of precipitation (i.e., interpolated gauged and reanalysis) and different spatial 
resolution associated with each of the selected dataset. I think this aspect can be easily 
addressed by running additional simulations. Please find my detailed comments below. 

Kind regards, 

Larisa Tarasova 

Detailed Changes:  

Major comments: 

MC1: Choice of the precipitation products for the comparison: The rationale for selecting 
exactly these datasets (interpolated gauge-based dataset and two reanalysis ERA5 and ERA5 
Land) is not clear to me. Particularly, it is not clear why two reanalysis products are compared, 
while the satellite and hybrid products are not selected. Moreover, the Section 2.2.1 does not 
provide any information whether their performance was tested with the in-situ observations in the 
region. Please revise and clarify. 

Thank you for this comment. We will add a mention of the satellite derived meteorological 
products in the introduction, also stating why we didn’t consider them for our study (see revised 
text section below). 

Proposed revision line 40-45:  

“They are typically generated through interpolation of available weather station measurements 
(e.g. Dorninger et al., 2008; Frei, 2014), or by estimating the conditions in non-monitored areas 
with numerical modelling in combination with the observed data from nearby stations (e.g. 
Muñoz Sabater, 2019; Hersbach et al., 2020). Alternatively, satellite observations can provide 
remote sensing estimates of precipitation and temperature with broad spatial and temporal 
coverage. For example, satellite precipitation products from missions such as the Integrated 
Multi-satellitE Retrievals for GPM (IMERG) (e.g. Huffman et al., 2015) or the Climate Hazards 
Group InfraRed Precipitation with Station data (CHIRPS) (e.g. Funk et al., 2015) rely on active and 
passive microwave sensors. However, both gridded climate products and satellite-derived 
estimates face important limitations in complex mountainous regions. Gridded products often 
have coarse spatial resolutions (typically 1–30 km or larger), which can lead to significant 
uncertainties in precipitation estimates due to unresolved orographic effects and local variability 
in precipitation patterns (Palazzi et al., 2013; Tarasova et al., 2016; Chen et al., 2021; Peña-
Guerrero et al., 2022). Similarly, satellite-based products are affected by retrieval uncertainties 
in high-altitude regions, misclassification of the precipitation phase, and limited ground 
validation (e.g. Li et al., 2023; Nepal et al., 2024). In addition, satellite temperature products 
generally provide land surface temperature (e.g., from MODIS, Wan et al. (2006) ) rather than near-



surface (2_m) air temperature. For these reasons, and because no single satellite product 
consistently provides both precipitation and temperature variables, we opted not to use satellite-
derived climate data as forcing in this study, but only the interpolation and reanalysis products.” 

Our focus was on comparing commonly used gridded meteorological products which often have 
varying spatial resolutions and data-generation methods. We chose not to include satellite-only 
or hybrid products (e.g., IMERG, CHIRPS) for the following reasons: Most remote sensing datasets 
offer only one of the required meteorological variables — typically precipitation — while near-
surface air temperature is generally derived from different platforms, such as MODIS or AIRS. 
Importantly, there is no single remote sensing dataset that provides both air temperature and 
precipitation simultaneously and consistently across the time span needed for our model. For 
this study, using forcing products where both variables originate from the same source (e.g., ERA5 
or MeteoSwiss) was a choice to ensure internal consistency and avoid introducing further 
uncertainty from cross-dataset blending. 

 
Lastly, Reanalysis and regional gridded products are widely used in glacio-hydrological studies 
across various regions (e.g. Naz et al., 2014; Engelhardt et al., 2017; Huss & Hock, 2018;  Rounce 
et al., 2020; Wimberly et al., 2025). Their comprehensive temporal coverage, physical 
consistency, and widespread availability make them a suitable benchmark for evaluating model 
sensitivity to meteorological forcing. This choice also enables the broader applicability of our 
findings to data-sparse regions, where reanalysis products may often be the only viable source of 
temperature and precipitation. 

 

MC2: Spatial resolution of precipitation: The narrative of the manuscript indicates that the goal 
is to investigate the effect of spatial resolution of precipitation input. However, in the experiments 
it is not only the resolution changes, but also the source of precipitation. In Figure 2 it is clearly 
visible that datasets are associated with different seasonality of precipitation among interpolated 
and reanalysis products. Given how different are the sources of precipitation, the effect of spatial 
resolution cannot be isolated. I think this can be easily fixed by upscaling (i.e., artificially 
increasing the resolution) of the same product (e.g., interpolated gauge-based precipitation) by 
several factors. 

We thank the reviewer for this comment regarding the spatial resolution of precipitation and its 
impact on our study. We acknowledge the concern that not only the data source changes across 
different precipitation datasets but also the resolution/spatial distribution. However, we would 
like to clarify why the spatial distribution does not significantly affect our model setup and how 
we have tested this issue. 

 
GERM does not utilize the distributed spatial information of meteorological data directly. Instead, 
the meteorological inputs are aggregated to the catchment average and then distributed 
according to the spatial resolution of GERM. This distribution is applied solely to the 
meteorological time series using the corresponding lapse rate (see clarification on this below 
when addressing the specific comment on this). Therefore, in our model setup, the spatial 
resolution of the input precipitation data itself does not influence the results as much as how well 
the meteorological product resolves precipitation amount and estimates its timing. 



 
To further address this concern, we performed a test where we artificially upscaled the 
MeteoSwiss gridded precipitation (1 km) to the 30 km grid resolution of the ERA 5 Reanalysis (will 
be added to the supplementary material, Figure S1 & S2). The results indicate upscaling the 
gridded products to the same resolution, in order to isolate the effect of spatial 
resolution/distribution of the product, does not introduce significant changes in seasonality or 
precipitation estimates at the aggregated level, supporting our claim that the resolution of the 
precipitation product does not substantially alter the results in this model setup. 

 

Figure S1: Average monthly temperature and precipitation from the MSgrid for the period 2000-
2022. (A) Temperature and precipitation from the product's original spatial resolution (1 km) 
aggregated over the catchment. (B) Temperature and precipitation aggregated over the 
catchment after degrading the product to the 30 km resolution of the coarsest meteorological 
product used in this study. In both panels temperature was then corrected to the mean 
catchment elevation using the product-specific monthly average temperature lapse rate provided 
in Supplementary Table S1. Precipitation is plotted as the mean catchment precipitation. 

 

 

Figure S2: Comparison between the mean 2000-2022 precipitation from the MSgrid product for 
both the upscaled (blueish) and not upscaled (reddish) methods. Colored area shows the 
variability of precipitation, while the line corresponds to the mean precipitation. 

To clarify we removed part of this sentence, section 3 Methods: “Our workflow (Fig. 4) contains 
two main experiments performed with GERM. Experiment 1 assesses the impact of the choice of 



meteorological forcing data on model outputs. To do so, the model is forced using four distinct 
meteorological products with different spatial resolutions, while maintaining a fixed model 
(GERM) geometry at 25m resolution".  

We added this clarification at the end of section 3.1. Climate forcing: “In this setup, the spatial 
distribution of precipitation within the original product has a limited effect on the catchment-
averaged time series applied in the model. This was tested by upscaling the high-resolution 
products to a coarser resolution prior to extracting the catchment-averaged precipitation time 
series (cf. Supplementary Figure 1 & 2). Consequently, in our model configuration, the ability of 
the precipitation product to accurately capture total amounts and temporal variability is of 
greater importance than its spatial resolution.” 

 

Specific comments 

Line 12-13: At this point in the manuscript, it is not quite clear what is meant here by the constant 
precipitation adjustment. Please revise and clarify this part. 

We clarified this section by adding “temporally” in line 13:  

“Calibrating the model on multi-data, [...] but is limited by temporally constant precipitation 
adjustments [....].” 

Line 40-45: It is important to mention here that gridded datasets are not always interpolated 
products but can also be reanalysis and satellite data. 

Thank you for your comment regarding the classification of gridded datasets. We acknowledge 
that gridded datasets can also be derived from satellite-based products, in addition to 
interpolation and numerical modelling (reanalysis). 

In the manuscript, we have already listed both interpolation-based and reanalysis-based 
products, as these are the types of datasets used in our study. For completeness, we will add a 
mention of satellite-based products in this section, while clarifying that they were not included in 
our analysis. 

See revised text in MC1 

Line 47: It might be worth mentioning here the work of Pena-Guerrero et al. 2022 (doi: 
10.1002/joc.7548) that compares the performance of different global precipitation products over 
complex terrain. 

We have now included the work of Peña-Guerrero et al. (2022) in the revised manuscript.  

Text edits, line 47: “This introduces uncertainty to the product, especially when estimating 
precipitation at high altitudes in complex mountainous topography, missing orographic effects, 
and local variability in precipitation patterns (Palazzi et al., 2013; Tarasova et al., 2016; Chen et 
al., 2021; Peña-Guerrero et al., 2022).” 

Line 119-120: Please explain this method in more detail and provide the corresponding reference. 

We have now clarified how the MeteoSwiss gridded product interpolates for temperature.  
 
“We used the gridded MeteoSwiss TabsD and RhiresD datasets. TabsD provides daily mean air 



temperature at 2 m above the surface, using data from about 90 long-term station series across 
Switzerland since 1961. The dataset applies a deterministic analysis method for temperature 
interpolation in high-altitude regions with a spatial resolution of 1 km, capturing daily 
temperature variations (Frei, 2014). The interpolation procedure combines a two-dimensional 
lapse-rate regression to represent vertical temperature gradients with a subsequent horizontal 
interpolation to account for spatial variability (Frei, 2014).” 

 

 

Figure 1: Please explain acronym ELA in the caption 

We have now spelled out the abbreviation ELA in the figure caption. 

New caption Figure 1:  

“ [.....] The hypsometry (middle-left panel) represents the distribution of catchment area and 
glacier area across elevation bands based on data from 2016, with the equilibrium-line altitude 
(ELA) indicated as dashed black line. The ELA marks the elevation at which annual accumulation 
equals annual ablation, effectively dividing the glacier into zones of net mass gain and loss. The 
catchment outline is provided by the Federal Office for the Environment (FOEN).” 

 

Line 142-145: Please explain this method in more detail and provide the corresponding reference. 

We have already provided the reference in the original manuscript. We have now edited the text 
to make the method clearer.  

Revised text: “For model calibration, we relied on geodetically-derived glacier mass loss change 
between 2013 and 2021. The geodetic mass loss was determined by differentiating two high-
resolution DEMs for Rhonegletscher acquired by dedicated monitoring flights on 21 Aug. 2013 
and 20 Aug. 2021 (GLAMOS, 2024b). The resulting ice volume change of –0.1354 km3 was found 
for the respective time period referring to the main glacier in the catchment (Rhonegletscher). 
The ice volume change was converted to a mass change by assuming a density of volume change 
of 850 kg m−3 (Huss, 2013)” 

 

Line 151: Please explain how the extrapolation is done. 

We have edited the text to clarify the extrapolation procedure.   

“To evaluate model results, we used annual and seasonal glacier-wide mass balance 
measurements for Rhonegletscher, covering the period 2007–2024 (GLAMOS, 2024a). This data 
is based on spatially distributed in-situ measurements of snow accumulation and ice melt across 
the entire glacier surface both in late April and September. Winter snow observations from 150 
up to 300 snow-sounding locations were converted to water equivalent using snow density 
measurements. Measurements of local annual mass balance at a network of 10 ablation stakes 
were extrapolated to the entire glacier surface with a model-based approach (Huss et al., 2021). 
Herein, a daily distributed mass balance model is optimized to match all point observations of 
winter and annual mass balance and thus extrapolates to unmeasured regions based on 
calibrated physical relations. Furthermore, the utilized approach provides a homogenization of 



arbitrary measurement dates to the fixed dates of the hydrological year. The so-obtained data set 
thus allows for straight-forward comparison to model results acquired in the present study.” 

 

Line 175-180: Please clarify how the lapse rates are computed and whether or not they are 
recomputed for different spatial resolutions. Please provide the estimates. 

Thank you for your valuable comment. We have clarified the methodology for deriving and 
applying lapse rates in the manuscript (section 3.1 Climate forcing). 

Text revisions (line 188 following): 

“GERM is driven by a point time series of temperature and precipitation, either near or within the 
catchment area, which are subsequently distributed across the catchment using a monthly-
averaged temperature lapse rate (cf. Supplementary Table S1). For each meteorological product, 
temperature lapse rates were computed as monthly averages by performing a linear regression 
of air temperature against elevation of grid cells that fall within the catchment. These monthly 
lapse rates were then used to downscale the temperature time series across the model domain. 
Precipitation is distributed across the catchment by applying an overall correction factor 
(C_prec)  and an annually fixed precipitation lapse rate (dP/dz) generally derived from in situ snow 
accumulation data over the glacier’s elevation range, as well as literature values (e.g. Farinotti et 
al., 2012). For capturing the small-scale spatial variability of snow accumulation, a distribution 
matrix derived from terrain characteristics (slope and curvature) is superimposed on spatialized 
precipitation (Huss et al., 2008a).  

Figure 2 caption correction: “[......] Temperature and precipitation of the gridded products were 
spatially averaged over the catchment. Temperature was then corrected to the mean catchment 
elevation using a product-specific monthly average temperature lapse rate (cf. Supplementary 
Table S1) while precipitation is given as the mean catchment precipitation. For the box plots, the 
22-year daily precipitation series was aggregated to mean monthly sums.” 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1: Applied monthly temperature lapse rates (in °C per 100m of elevation; kept constant 
over the entire modeling period) for each meteorological product applied in this study. MS_grid 
refers to the gridded product of MeteoSwiss.  The sequence of months reflects the hydrological 
year. The lapse rate for the Grimsel station data was obtained based on surrounding 
meteorological stations.  

Month Grimsel MS_grid ERA5-Land ERA5-Reanalysis 

October 

November 

December 

January 

February 

March 

April 

May 

June 

July 

August 

September 

-0.52 

-0.53 

-0.60 

-0.64 

-0.65 

-0.65 

-0.65 

-0.62 

-0.59 

-0.56 

-0.53 

-0.56 

-0.47 

-0.45 

-0.43 

-0.43 

-0.44 

-0.49 

-0.52 

-0.53 

-0.55 

-0.55 

-0.54 

-0.51 

-0.44 

-0.42 

-0.41 

-0.42 

-0.42 

-0.45 

-0.48 

-0.48 

-0.49 

-0.5 

-0.48 

-0.45 

–0.41 

-0.39 

-0.38 

-0.37 

-0.38 

-0.41 

-0.43 

-0.44 

-0.45 

-0.46 

-0.44 

-0.41 

 

Line 183: It is not clear how this is done. Please clarify. 

We have clarified it in the text as mentioned in the reply to MC2 and the specific comment to line 
Line 175-180 

Line 228: It is not clear why precipitation correction factor represents accumulation parameter. 
Please clarify. 

Thank you for pointing this out. We agree that the terminology could have been better clarified. In 
our model setup, the precipitation correction factor (C_prec) directly influences the total 
precipitation input, including both liquid and solid components. Since snow accumulation in the 
model is entirely driven by solid precipitation, scaling total precipitation with C_prec also scales 
the snow accumulation accordingly. 

To avoid confusion, we will no longer refer to C_prec as an “accumulation parameter” and instead 
consistently refer to it as the precipitation correction factor. However, we clarify in the revised text 
that its role in controlling accumulation arises from its direct influence on solid precipitation, 
which drives accumulation in the model. 

Revised text (Line 228): “At the same time, the precipitation correction factor (C_prec) is 
optimized within bounds of [0.6, 1.5]. C_prec is a constant parameter that adjusts the daily 



catchment precipitation—both liquid and solid—by a fixed percentage, thereby increasing or 
decreasing it uniformly over the modeling period. Since accumulation in GERM is entirely 
determined by solid precipitation, and C_prec directly scales this input, it effectively also controls 
the magnitude of accumulation in the model.” 

Table 3: Please clarify if these are best calibrated parameters. 

Yes, the values shown in Table 3 represent the final, best-calibrated parameter sets resulting from 
the respective calibration procedures (single-data and multi-data) for each forcing product and 
model resolution. We have clarified this in the manuscript and table caption. 

Table 3 heading: “Single- and multi- data calibration: Final best-calibrated parameter values from 
the single- and multi-data calibration for each Experiment 1 (top) Experiment 2 (bottom). [.....]” 


